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Fig. 13. Experiments with different initial conditions. After ∼ 180 iterations, agents are capable of achieving less 3% distance from the
consensus state in all three cases.

Fig. 14. Scalability experiment. The decentralized algorithm is scalable with the number of agents. On the other hand, the network
structure might affect the convergence speed. In the seven- and nine-agents cases, the diameter of the network is two and it leads to
longer times for the robot to complete the task.

8.1. Potential Extensions

When modules are equipped with different sensors and
actuators, there are many other applications that can be gen-
eralized from this framework. Here, we illustrate some of
them. (1) Light-adaptive modular panel: we can change the
pressure sensors we mount on the robot to light sensors.
Each agent is programmed to achieve the same light absorp-
tion as its neighbors. A similar concept can be applied to
many environmental sensory adaptation tasks. (2) Adaptive
prosthetic structure: existing prosthetic devices for children
require manual reconfiguration to adapt to limb growth. If
force (pressure) sensors are mounted on the device, it is pos-
sible to construct a self-reconfigurable prosthetic device.
(3) A similar concept can be applied to a support struc-
ture for plants. The structure is capable of self-adaptation
based on the growth of the plant and lighting conditions. (4)
The described framework can also be potentially applied to
solve dynamic tasks, such as locomotion. One straightfor-
ward generalization is to view dynamic tasks as a sequence

of self-adaptations. In Yu and Nagpal (2009), we described
how one can use this framework to program a strut-based
modular robot to achieve adaptive locomotion.

8.2. Potential Limitations and Challenges

The type of tasks we illustrate with this framework share
one similarity: they can be expressed as a single consen-
sus state, e.g. modular gripper grasping tasks. This is the
main limitation of the current framework. To further extend
such a framework to solve more sophisticated tasks, it is
necessary to have a mechanism that can decide among dif-
ferent consensus states (also called biased consensus states)
based on different external states. For example, we might
need different pressure distributions for a modular grip-
per to optimally grasp different types of objects, instead of
using a uniform pressure distribution to grasp all objects.
Understanding the scope of self-adaptation tasks and of this
limitation is an important future direction of this research.
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Fig. 15. Our framework can be viewed more generally as a distributed constraint-maintenance framework. (a) A human face shape can
be specified with inter-agent constraints. The shape is formed by 16,000 modules. (b), (c) Several different shapes generated from the
same task specification scheme as (a). (d) Agents can be connected to form 3D structures. An adaptive-building structure formed by the
modules, and the gray region indicates uneven terrain.

One limitation of this approach is that the agent task
must be specified in advance. In the tasks where global goal
require all agents achieve the same states, it is easy to spec-
ify such tasks in terms of local constraints. This is primarily
due to the fact that such global goals are complete when all
agents achieve the same state as its neighbors. For global
goals that need agents to achieve different states, translating
a global tasks into local constraints amongst agents can also
be challenging. One interesting future direction is to design
a task compiling framework to automatically generate local
constraints from global objective functions. While using
generalized distributed consensus algorithm, one needs to
appropriately design feedback function g based on three
principles we present here. Another interesting direction is
to automate this feedback function design process to derive
g based on our desired task.

In some cases, the agent’s structure might change over
time and the original task specification might no longer
be valid. In the case when all agents need to reach con-
sensus states, agents’ task specifications are not required
to changed (since �ij = 0 for all i, j). However, it is still
hard to achieve role replacement in biased consensus tasks

(�ij �= 0 for all i, j). One interesting future direction would
be designing a mechanism that allows agents to change their
modular structures arbitrary and dynamically assign task
accordingly.

8.3. Self-organizing versus a Centralized
Approach

An important question in networked multi-agent systems
is whether to use a decentralized self-organizing approach,
such as that described here, where agents iteratively com-
municate and react to arrive at a solution, or to use a cen-
tralized tree-based approach where a root agent collects all
of the information from other agents. This question is not
only relevant to modular robots, but also to robot swarms
and sensor networks. It also applies to many problems,
from shape formation to time synchronization. Using our
results, we can describe the tradeoffs between these two
approaches.

For the centralized algorithm, we assume that a root
agent collects all of the information from all other agents
using a spanning tree, computes a final state for every
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agent, and then disseminates the results back to them. This
results in two costs: (a) a communication cost of collect-
ing/disseminating information; and (b) a computation cost
for the root node. In most homogenous multi-agent sys-
tems, each agent has fixed communication and computation
power. For the kinds of tasks we consider here, communi-
cation is often a more severe bottleneck: if an agent can
only collect a constant amount of information per unit time,
then the time to collect all the agents’ states is O( n) (n:
number of agents) and not O( d) (d: diam( G)). This cost
is paid for every shape change, regardless of the distance
between the initial and desired states. This results in poor
performance in the case of small perturbations, where infor-
mation must travel all the way to the root agent before it
can be resolved. In contrast, the communication cost of
the decentralized algorithm described here is O( t) (t: itera-
tion number), which depends on both topology and distance
from goal. The relationship between topology and perfor-
mance in some cases is worse than the centralized case.
However, if the distance from goal is small (e.g. a small per-
turbation or slowly changing environment) then the system
reacts rapidly in only a few iterations even when n is large.
Figure 4) shows the self-organizing approach’s capabilities
of adaptation to large and small perturbations. We can see
from the figure that the number of iterations required to
achieve the task remains low in small perturbation cases,
even when we significantly enlarged the size of the network.

This suggests that for consensus-like problems, while
decentralized algorithms may pay a significant start-up cost
to achieve a steady state, they are extremely reactive to
perturbations. Thus, they are more appropriate when the
goal is to maintain constraints over long periods of time
under uncertain and changing conditions, rather than pro-
duce a solution once (as shown in applications of Section
7). Finally, they are more robust and less complex to imple-
ment in situations where agent errors and topology changes
are common.

9. Conclusions

We have presented a self-organizing framework inspired
by biological collective behaviors for self-adaptation tasks
in modular robotics. We show that modular robots’ adap-
tive tasks can be captured by distributed constraint mainte-
nance when the robot can be abstractly viewed as a sensor–
actuator network. Such a formulation allows the robot to
exploit its distributed sensors to efficiently adapt to vari-
ous environmental conditions, similar to the way biological
systems achieve scalable self-adaptation. In addition, it can
be implemented in a wide range of modular robot systems,
including those with indirect relationships between their
sensors and actuators.

We also have presented unified controller design prin-
ciples for our framework and have further analyzed the
various theoretical properties of this class of algorithms,
including correctness, scalability, and robustness. In com-
parison with a centralized approach, this approach has a

strong advantage in robustness and reactivity. Based on our
theoretical understanding, we implemented our framework
in a diverse set of modular robot applications, including:
(1) self-adaptive structures; (2) a pressure-adaptive column;
(3) an adaptive modular gripper; (4) other sensor–actuator
network applications, e.g. an adaptive prothetic device. Our
results show that such a control scheme is robust toward
real-world sensor and actuator noise. These applications
represent a small subset of what is achievable within this
framework.

We plan to extend this work in several directions. First,
we have illustrated several potential applications to which
we can further apply this framework, including a self-
adaptive support structure. Second, we are interested in
applying this framework to other distributed robotics appli-
cations beyond modular robots, such as a team of mobile
robots. Finally, we are interested in exploring more deeply
the advantages and disadvantages of decentralized algo-
rithms. One potential control solution based on this study is
a mixed strategy that is composed of centralized and decen-
tralized controllers. This allows us to exploit the strengths
of both approaches. For example, a humanoid robot utilizes
a centralized controller to reach an object, and decentral-
ized controllers run on the gripper, allowing it to grasp the
object.
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Notes
∗ The preliminary version of this work was described in Yu and

Nagpal (2008, 2009).
1 For example, in sensor networks time synchronization, an

agent can observe its neighbors’ firing time and thus control
its own firing time.

2 For example, if the agent’s actuator is a linear actuator, xi( t)
would represent the length of the actuator. If the actuator is a
rotary one, it would represent the angle of the actuator.

3 We can show that A and L have the same eigenvectors. Let
vi be the ith eigenvector of L and μi = 1 − αλi. Here
Lvi = λivi ⇒ Avi = ( I − αL) vi = ( 1 − αλi) vi = μivi. In
addition, μ1 = 1 is a simple eigenvalue of A with associated
eigenvector: 1.

4 We note that the assumption that A( t) is symmetric (condi-
tion 3) can be relaxed, but the upper bound on convergence
rate is less tight. The proof of this case is based on the theory
of non-homogenous stochastic matrix products (Seneta 1981);
the product A( t) · · · A( 2) A( 1) will converge to a rank-one
matrix with exponential rate. The recent result in Cao et al.
(2008) explicitly determines an upper bound on convergence
rate.

5 In the case of one or two initial contacting agents, we provide
slight external support to the object to prevent the rest of the
agents from contacting the object.
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6 The ith element of X∗: x∗
i + ∑

aj∈Ni
φij( t) ( x∗

j − x∗
i ) −∑

aj∈Ni
φij( t) �∗

ij = x∗
i .

7 Since all agents are identical and execute the same control law,
it is safe to switch their indices.
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Appendix A. Proof of Theorem 1

We first show that analyzing Equation (6) is equivalent to
analyzing a linear dynamical system without the bias vector.
The optimality condition:

X ∗ = A · X ∗ + b̃ (16)

can be rewritten as αL ·X ∗ = b̃. We use the graph Laplacian
property that when G is connected, rank( L) = n − 1 with
null( L) = 1. We can add an additional constraint to the sys-
tem based on mass conservation property of the agent state:∑

i xi( 0) = ∑
i x∗

i = C (since A is a row stochastic matrix,
and

∑
i b̃i = 0). The new linear system with the additional

constraint becomes αL′ · X ∗ = b̃′. Since the new constraint
lies in the null space of L, rank( L′) = n and there exists a
unique X ∗ for every initial condition X ( 0). We subtract the
optimality condition from Equation (6):

Y ( t + 1) = A · Y ( t) (17)

where Y ( t) = X ( t) −X ∗. The following proof follows the
procedure of Olfati-Saber et al. (2007). Since L is a real
symmetric matrix, the well-known Courant–Fischer theo-
rem yields

λ2( L) = min
‖x‖=1, x⊥1

xTLx

xTx
.

As Y ( t)T ·1 = 0 for all t, we can utilize the results from
Olfati-Saber et al. (2007) and show that

max
Y (t)

Y ( t)T AY ( t)

Y ( t)T Y ( t)
= μ2( A) < 1, (18)

where μ2( A) denotes the second largest eigenvalue of
A. Define a Lyapunov function V ( t) = ∑

i( xi − x∗
i )2 =

Y ( t)T Y ( t). Now, following Equation (18), we obtain

V ( t + 1) =( AY ( t) )T ( AY ( t) ) = Y ( t)T A2Y ( t)

<( μ2( A) )2 Y ( t)T Y ( t) = ( μ2( A) )2 V ( t) . (19)

Here Y ( t) converges to zero (X ( t) converges to X ∗) with
exponential rate at least μ2( A) < 1.

Appendix B. Proof of Theorem 2

The A( t) matrix in Equation (9) can be written as I − Lw( t)
where Lw( t) is a weighted graph Laplacian matrix. The
properties of the weighted graph Lalpacian are similar to
those of the standard Laplacian (Mohar 1991b). When G
is connected, rank( Lw( t) ) = n − 1 with null( Lw( t) ) = 1.
Since

∑
i b̃( t) = 0 and A( t) is stochastic for all t, the mass

conservation constraint still applies. We can solve X ∗ with
the same procedure as the proof of Theorem 1 with respect
to a particular A( t). We note that the obtained X ∗ satisfies
x∗

j − x∗
i = �∗

ij for all ai, aj ∈ Ni, the optimality condition

X ∗ = A( t) X ∗+b̃( t) will hold for all6 t. We can again obtain
the new dynamics system:

Y ( t + 1) = A( t) Y ( t) .

Since Lw( t) is a real symmetric matrix for all t. Applying
the Courant–Fisher theorem to the analogously defined Lya-
punov function, a similar derivation to Equations (18) and
(19) yields

V ( t + 1) ≤( μ2( A( t) ) )2 V ( t) ≤( max
t

μ2( A( t) ) )2 V ( t) .

Therefore, the convergence rate is at least the maximal
value of the second largest eigenvalues among the A( t).

Appendix C. Proof of Theorem 4

Expanding out the definition of 2-norm, we have

‖X ( 0) −X ∗‖2 =
∑

i

( xi( 0) −x∗
i )2 (20)

=
(
∑

i

x2
i ( 0)

)
+
(
∑

i

( x∗
i )2

)

−2
∑

i<j

xi( 0) x∗
j . (21)

Since xi( t) > 0 for all t, both xi( 0) and x∗
i must be non-

negative. Thus,
∑

i<j xi( 0) x∗
j is non-negative. Similarly,

∑
i x2

i ( t) ≤ (∑
i xi( t)

)2
for all t. Hence,

‖X (0) −X ∗‖2 ≤
(
∑

i

xi( 0)

)2

+
(
∑

i

x∗
i

)2

.
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By the conservation of mass principle mentioned above,∑
i x∗

i = ∑
i x( 0)i = C, so we have

‖X (0) −X ∗‖2 ≤ 2C2.

Taking square roots of both sides of the above and substi-
tuting into Equation (11) yields the result.

Appendix D. Proof of Theorem 5

We have seen in Theorem 1 that we can always convert
biased consensus dynamics, i.e. b̃ �= 0, to equivalent con-
sensus dynamics with b̃ = 0. We therefore only need to
prove the case when b̃ = 0.

We first construct collective dynamics as in Equation (6).
We use ak to denote the agent whose actuator fails in the
process. It thus has a fixed state x∗. We use n to denote the
number of agents in the system. For the sake of proof con-
venience, we switch the index of agent ak with the last agent
an. Here ak and an’s set of neighbors7, Nk and Nn, are also
correspondingly changed. an is now the agent with actu-
ation failure. Since agent an’s state is fixed at x∗, agents’
states can be written as a n-dimensional column vector:
X (t) = ( x1( t) , . . . , xn−1( t) , x∗)′.

We can further write the collective dynamics of the
agents as follows:

X ( t + 1) = A · X ( t) =
t∏

m=1

A · X ( 1) . (22)

This can be further expanded as follows:

t∏

m=1

A · X ( 1) =
(

F L
0 1

)t

X ( 1) (23)

= M( t) ·X ( 1) =
(

P( t) Q( t)
0 1

)
X ( 1) ,

where F is an ( n−1) ×( n−1) matrix and Fii = 1−α · |Ni|,
and Fij = α. Here L is an n − 1 column vector and Li = α

if ai ∈ Nn, where Nn is simply the set of neighbors of the
failed agent. To prove the convergence property of Equation
(22), we first define:

• matrix maximum norm, ‖M‖max = maxi
∑

j Mij;
• matrix minimum norm, ‖M‖min = mini

∑
j Mij;

• dmax, the maximal hop distance between an agent and
the failed agent.

To prove convergence, we use the property that the prod-
uct of row stochastic matrices is still row stochastic. We can
see that A is a row stochastic matrix with a positive diago-
nal (Aij ≥ 0 and

∑
j Aij = 1, for all i), thus M( t) is also

row stochastic with
∑

j Mij( t) = 1, for all i. We can further
expand

Q( t) =
t∑

m=1

Fm−1 · L. (24)

Since the failed agent can still communicate, the communi-
cation graph G stays connected. From Equation (24), we can
immediately see that Fdmax+1 > 0 and thus ‖Q( t) ‖min > 0
when t ≥ dmax + 2. We can also see from Equation (24)
that ‖Q( t) ‖min monotonically increases with t after time

dmax + 2. Since M( t) is row stochastic,
(∑

j Pij( t)
)

+
Qi( t) = 1, for all i. Therefore, 0 < ‖P( t) ‖max < 1.
Since ‖Q( t) ‖min monotonically increases with t after time
dmax + 2 and ‖P( t) ‖max + ‖Q( t) ‖min = 1, the maximum
norm of P( t) decreases at least every dmax + 2 time steps.
Thus, limt→∞ ‖P( t) ‖max = 0. This leads to the conclusion
that limt→∞ Q( t) = 1 ⇒ limt→∞ xi(t) = x∗, for all i. All
agents will eventually have the same state x∗ as the failed
agent an.

Appendix E. Proof of Theorem 6

The proof of Theorem 6 follows the same procedure as The-
orem 5. We now have more than one agent that is fixed at
certain states due to actuation malfunction. Similarly, we
index these k agents from an−k+1, an−k+2, . . . , an and their
fixed states are x∗

1, x∗
2, . . . , x∗

k . We can also write down the
collective dynamics in the following form:

X ( t + 1) = A · X ( t) =
t∏

m=1

A · X ( 1) =
(

F L
0 I

)t

X ( 1)

= M( t) ·X ( 1) =
(

P( t) Q( t)
0 I

)
X ( 1) . (25)

Different from the proof of Theorem 5, matrices F and
P(t) are now ( n − k) ×( n − k) matrices and L and Q( t) are
now ( n − k) × k. We denote dmax as the maximal hop
distance between an agent and its closest failed agent in
our graph G. We can follow the same procedure as The-
orem 5 to show that ‖Q( t) ‖min > 0 for t ≥ dmax + 2.
Using the stochastic matrix property, we again show 0 <

‖P( t) ‖max < 1 for t ≥ dmax +2. This allows us to show that
limt→∞ ‖P( t) ‖max = 0 and

∑
j Qij( t) = 1 for t → ∞.

Since Q( t) is now multi-column, we need to show that
each element in Q( t) converges to a stable state: Qij( t) →
Q∗

ij, for all i, j. Owing to the fact that the bottom-right sub-
matrix of M( t) is a k × k identity matrix, we can get
Qij( t) ≥ Qij( t − 1) for all i, j; and Qij( t) is monotonically
nondecreasing with t for all i, j. Therefore, as

∑
j Qij( t)

approaches 1, Qij( t) will also approach a fixed value Q∗
ij,

for all i, j. Since each failed agent’s fixed state can be dif-
ferent, each agent converges to a potentially different fixed
state:

lim
t→∞ xi( t) =

∑

j

Q∗
ijx

∗
j .

Appendix F. Proof of Theorem 7

The proof of Theorem 7 is the same as Theorem 6 of
Olfati-Saber et al. (2007). Olfati-Saber et al. (2007) prove
the case when the agent topology is dynamic and periodi-
cally connected, all agents’ states will converge to a single
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value. The periodically connected property (due to tempo-
rary communication failures) we assume here is the same
as Olfati-Saber et al. (2007) which states that the union of
all graphs over a finite sequence of intervals are connected.

Appendix G. Convergence Rate versus
Topology

We provide several graph topological factors versus λ2

(μ2 = 1 − αλ2). We define several factors that are not
mentioned in the article. The mean distance between two
vertices:

ρ̄ = 1

n( n − 1)

∑

∀u,v∈V (G),u�=v

d( u, v) .

The maximal degree sum of two connected vertices: d+
max =

max{deg( u) + deg( v) | uv ∈ E( G) }.
We can summarize λ2’s relationships with various

topological factors from (Mohar 1991a; Chung 1994) as
follows:

Best Case Worst Case

Number of agents (n) O( D
√

n) O( 1/n)
Diameter (D) O( 1/D) O( 1/D)
Mean distance (ρ̄) O( 1/ρ̄) O( 1/ρ̄)
Maximal degree (dmax) O( dmax) n/a
Maximal degree sum (d+

max) O( d+
max) n/a
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