Research

Our work on self-organizing multi-agent systems lies at the intersection of Computer Science/AI, Robotics, and Biology. The main theme in our lab is understanding and engineering collective behavior, but we do it in many ways -- both theory and hardware, and both bio-inspired and collaborations with biologists. You can read more about the broad themes and projects in our lab on this page, see movies and talks of our work on our youtube channel, or read selected articles on our publications page.

Favorite Quote: "Building 1,000 robots is hard", McLurkin said. "Getting 1,000 robots to work together reliably is, how they’d say it in Boston? 'Wicked hard'."

We work on three main areas:

  • Bio-inspired Multi-agent Theory

    We explore artificial multi-agent models inspired by self-organising and self-repairing behavior in biology. We are especially interested in global-to-local compilation and decentralized coordination, i.e. how user-specified global goals can be translated into local agent interactions, and how one can reason about the correctness and complexity of algorithms based on local agent interactions. Our goal is to show how biological design principles (e.g. stigmergy, implicit coordination, self-assembly) can be formally captured, generalized to new tasks, and theoretically analyzed.

  • Bio-inspired Robot Swarms

    We study bio-inspired approaches for building and programming novel robotic systems that rely on large numbers of relatively cheap and simple agents, especially robot swarms and self-assembly (e.g. BlueSwarm, Kilobots, Termes, Robobees). We are especially interested in the body-brain-colony design space and in embodied intelligence, i.e. how exploiting mechanical intelligence and collective intelligence together can enable novel autonomous robot collectives for new tasks (collective construction, 3D soft self-assembly, underwater exploration, etc). 

  • Biological Collectives

    We develop mathematical and experiment-driven models of individual behavior to investigate how system-level properties emerge in collective systems. We work closely with experimental biologists, and conduct field studies. Our previous work focused on epithelial tissues in fruit fly development, relating local cell programs to global tissue-level outcomes. Our current work focuses on social insects, such as mound-building termites, collectively-transporting ants and bridge-building army ants, that coordinate to achieve complex tasks.

collective intelligence, swarm intelligence, multi-agent systems,
self-organization, amorphous computing, global-to-local programming
bio-inspired robots, swarm robotics, self-assembling and modular robots, sensor networks
decentralized algorithms, distributed computing, stigmergy, implicit coordination
systems biology, social insects, multicellular systems

 

kilobot close up red backgroundKilobot AAMAS 2018Bluebot1 robotFlippy robot body, iros 2017Flippy robot in a boxtermes robot blackAmorphous Construction by Nils NappLucian's self-assembling track robotsChihhan and Becky, 2010modular tableRobobee brain-body-colony diagramRobobee Exhibit, Museum of Science, Boston 2014Root robot closeupAerobot decorationSerena thesis, 2016termites close up in dishPanama 2016, group in jungleNamibia 2011, Kirstin and Justin