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ABSTRACT
The gradient, or hop count, algorithm is inspired by nat-
ural phenomena such as the morphogen gradients present
in multi-cellular development. It has several applications in
multi-agent systems and sensor networks, serving as a basis
for self-organized coordinate system formation, and finding
shortest paths for message passing. It is a simple and well-
understood algorithm in theory. However, we show here
that in practice, it is highly sensitive to specific rare errors
that emerge at larger scales. We implement it on a system
of 1000 physical agents (Kilobot robots) that communicate
asynchronously via a noisy wireless channel. We observe
that spontaneous, short-lasting rare errors made by a sin-
gle agent (e.g. due to message corruption) propagate spa-
tially and temporally, causing cascades that severely hinder
the algorithm’s functionality. We develop a mathematical
model for temporal error propagation and validate it with
experiments on 100 agents. This work shows how multi-
agent algorithms that are believed to be simple and robust
from theoretical insight may be highly challenging to im-
plement on physical systems. Systematically understanding
and quantifying their current limitations is a first step in the
direction of improving their robustness for implementation.
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Figure 1: The gradient algorithm running on 1000 physical
agents (Kilobot robots, inset). Increasing gradient values are
represented by the repeating cycle of colors red, magenta,
blue, cyan, green, and yellow.

1. INTRODUCTION
The biological world abounds with self-organizing systems

where large numbers of relatively simple agents use local in-
teractions to produce impressive global behaviors, such that
the system as a whole is greater than the sum of its parts.
These systems exhibit several properties that are highly de-
sirable from an engineering perspective, such as robustness,
scalability, and flexibility [3, 4, 12]. Presently, however,
there exists a substantial gap between the large body of lit-
erature on mathematical and computational models of self-
organizing systems and the small body of work on realizable
physical systems that could verify the predictions made by
such models. These models necessarily involve simplifica-
tions, and can fail to manifest emergent behaviors that arise
through the intricate physical interactions and variability
that exists in real systems. As such, their utility is lim-
ited if the fidelity to the physical world remains untested.
This leaves a wide gap in our scientific understanding – we
critically need physical experimental systems to discover and
develop e↵ective mathematical tools for predicting how such
complex systems will scale, adapt, or fail.



In this paper we take a well-known collective behavior–the
gradient algorithm–and study how it behaves in an physical
system as we increase the size of the collective (Figure 1).
This algorithm is inspired by biological phenomena such as
the morphogen gradients present in multi-cellular develop-
ment [13]. It is used as a component behavior for many
higher-level collective behaviors, such as coordinate system
formation [8], message routing and programming in sensor
networks [3, 5, 6], and self-assembly in modular robots [3,
10, 11, 12]. Unlike many other collective behaviors, it is
well-understood analytically in models of multi-agent sys-
tems and has attractive self-stabilizing features [7, see asyn-
chronous breadth-first search]. While theoretical models in-
corporate some non-idealities (e.g. asynchrony, message loss,
agent failure/removal), how the algorithm behaves in real
large-scale systems has not yet been tested.

We tested the basic gradient algorithm using the Kilobot
robot [9], which allows us to create networks of 10 to 1000
agents that communicate wirelessly with their local neigh-
bors. We observed the emergence of error cascades, where
a single, short-lived agent error is amplified by correct ap-
plication of the algorithm to cause large scale errors and
instabilities in the system. Small-scale experimental sys-
tems behave as predicted by analytical models; however as
the network size goes up, the system shows a high level of
instability, and a 1000-agent network never achieves a stable
gradient. We show that these cascades are caused by rare er-
rors not considered before in analytical models, that exploit
this algorithm’s vulnerability. The rare error is amplified by
an agent’s neighbors, resulting in an error ‘infection’ that
rapidly spreads both temporally and spatially in a way that
is exponentially related to system scale. These error cas-
cades/infections occur in small systems (e.g. 100 agents)
but are quickly self-corrected. However, as the system size
increases, the entire system exhibits instability due to am-
plification and overlapping of cascades–a phenomenon which
is counter to expectations from previous analytical models.

We present a mathematical model that demonstrates what
properties a rare error must have to create a cascade in the
gradient algorithm, and how local connectivity amplifies the
errors spatially, and local asynchrony amplifies them tempo-
rally. Using this model, we are able to predict the probabil-
ity of a particular agent being in error as a function of both
the probability of such rare errors and the network size. We
validate our new model with controlled experiments where
errors are purposefully injected into a simple line network.

Our experimental case study highlights the need for in-
termediate systems that can close the gap between existing
theory and large-scale implementation by uncovering emer-
gent behaviors and providing a basis for new theory models.

2. AGENT AND GRADIENT MODEL
Consider a network of spatially-distributed agents, in which

each agent can communicate with its neighbors within a
fixed distance threshold [2, 3, 5, 6]. Within this context,
the gradient algorithm assumes the presence of a designated
seed agent (see Figure 2, right) from which the gradient em-
anates. The seed agent has a fixed gradient value of zero.
Each non-seed agent computes its estimated ‘distance’ from
the seed agent in the form of a hop count: The agent con-
siders its neighbors within a limited visibility range, and
computes its own gradient value as the minimum gradient
value of its neighbors, plus one. An agent’s gradient value

represents the minimum number of hops that a message orig-
inating from the seed must make in order to reach that agent.

In an ideal scenario, each agent continuously transmits
the minimum of its received gradient values from its neigh-
bors, plus one. Under these conditions, the algorithm is
provably correct, and converges to a stable equilibrium in
linear time with respect to the network’s diameter. It is
also self-repairing; that is, if there is a change in the net-
work topology (e.g., in the location of the seed), the system
re-converges in finite time to correctly reflect this change [7].

In a practical scenario, such as a wireless sensor network,
agents communicate with each other by passing discrete
messages and do not operate in lock step (i.e., they are asyn-
chronous) [5, 6]. Under these conditions, the gradient algo-
rithm is typically implemented with agents having a polling
period during which they collect as many neighbor messages
as possible. During each period, an agent collects messages
from its neighbors, and transmits its gradient value as com-
puted at the end of the previous period. The period duration
is chosen to be large enough so as to minimize the chance
of message loss (i.e. of not receiving any message from a
neighbor a period), but not too large that it slows down the
gradient formation time. If an agent receives no messages
(from any neighbor) during a period, it retains its gradient
value from the previous period. The algorithm as used in
this paper is presented below:

own value = random number (� 1)
min neighbor value = 1
last updated = timer
while (1) do

if message received = 1 then
if neighbor value < min neighbor value then

min neighbor value = neighbor value
message received = 0

end

end
if timer > last updated + PERIOD then

if min neighbor value < 1 then
own value = min neighbor value + 1
min neighbor value = 1

end
last updated = timer

end

end
Algorithm 1: The gradient algorithm as implemented in
this work. It is assumed that a “timer” variable is available
that increases in the background at a known, fixed rate. It
is also assumed that whenever a message from a neighbor
arrives, an interrupt handler stores the “neighbor value”
and sets the “message received” flag to 1.

3. THE KILOBOT ROBOT
We implemented the gradients algorithm using the Kilo-

bot robot [9] as a physical agent. The Kilobot is a low-cost
robot designed for being operated in large collectives, with
no need for individual attention. Here we use the Kilobot as
a static agent in a wireless sensor network, and will there-
fore only describe its communication capabilities. Kilobots
communicate with each other via an infrared transceiver lo-
cated at the bottom of the robot, with a communication
distance of up to three body lengths. The channel is shared
using a carrier sense multiple access with collision detection



Figure 2: (a) Arrangement of agents and seed locations in experiments with several collective sizes; (b) Gradient values and
display color scheme for an ideal (i.e. error-free) scenario. The red agent with a gradient value of 0 is the seed.

protocol (CSMA/CD), and the user can set the number of
transmission attempts per second. Upon receiving a mes-
sage, a Kilobot can estimate the distance of the transmitting
Kilobot based on the signal intensity.

4. EXPERIMENTS ON AGENT NETWORKS
4.1 Experimental Setup and Protocol

We considered networks of increasing sizes, namely 10,
100, 256, 504, 1001 agents. The agents were arranged in a
tightly-packed hexagonal configuration, and the neighbors
considered in the algorithm were the (up to) 6 first-layer
neighbors that are one body length away. This configuration
was chosen because it o↵ers a highly controlled experimental
setup, with a correct gradient pattern that is regular and
predictable (see Figure 2, right)—as such, deviations from
this correct pattern are easily recognizable.

For each network size, the agents were arranged in rows
containing equal numbers, and the number of rows was cho-
sen to give a roughly square overall configuration. The seed
agent was placed roughly in the middle of one of the square’s
edges. Figure 2 (left) shows these arrangements. For each
size of collective, 5 experimental trials were performed. The
trial times for 10, 100, 256, 504, and 1001 agents were, re-
spectively, 10, 10, 15, 21, and 30 minutes. These times were
chosen to increase roughly in proportion with the diameter
of the network, which determines the maximum error-free
gradient values that are possible in the system (in this case,
3, 13, 20, 28, and 40). Algorithm 1 was used with a polling
period of T = 2 seconds and a message rate of around 8
per period. Since Kilobots can receive messages from up
to three body lengths away, incoming messages had to be
considered or discarded based on the estimated distance of
the originating agent. Kilbots have a circular body with
diameter 33mm. Therefore, in a hexagonal configuration,
the first layer of neighbors (up to 6) are at a distance of
33mm. The second layer of neighbors are at a distance of
33

p
3 = 57.16mm or 33 ·2 = 66mm. In light of these values,

a distance threshold of 40mm was used to distinguish first-
layer neighbors from second-layer neighbors and beyond.

The computed gradient values of the agents were tracked
using an overhead camera. Each agent has an RGB LED
that can in principle display over 16 million colors; however,
in order to allow for accurate distinction by the tracking
software, the number of colors used was limited to 6. Since
the maximum gradient value in the system was larger than 6,
each color needed to be re-used for multiple gradient values.
As such, the agents displayed the color corresponding to

their calculated gradient value, modulo 6. The results 0
through 5 were associated with the following colors, in order:
red, magenta, blue, cyan, green, and yellow. An illustration
of this color scheme for an ideal (i.e., error-free) scenario is
shown in Figure 2 (right). The frame rate of the camera was
set to 1 frame per second (i.e., 2 frames per period).

4.2 Results
In order to understand the experimental behavior, we cre-

ated plots (Figure 3) that allow one to see error patterns
linked in time and in space. The horizontal axis shows the
time in seconds. Each row represents the state of an agent
over time. The color represent the agent’s gradient value,
using the repeating color cycle described in the previous sec-
tion. The right bar indicates the error-free gradient value
of each agent. The vertical axis corresponds to each agent
sorted by its error-free gradient value, with the seed being
in the top row. Agents with the same gradient value are
sorted by ID (which is a function of xy position, but does
not guarantee that spatially-adjacent agents are contiguous
within a gradient value band).

The plot for 10 agents shows a stable color pattern, which
is what is expected from an analytical, error-free model of
the gradient algorithm. In a 100-agent collective, errors be-
gin to happen that are correlated in time, often appearing
as a downwards color smear across the pattern. This implies
that the agents in error believe themselves to be closer to
the seed than they actually are. The smears travel in time,
with agents closer to the seed being in error first, and agents
with higher gradient values being in error at a later time.
Moving downwards, most smears increase in size both spa-
tially and temporally, meaning that more agents are in error
for longer periods of time. These observations are sugges-
tive of errors that propagate and expand in a direction away
from the seed. In a 100-agent collective, the gradient values
recover between cascades, but in collectives of 256 and 504
agents, the cascades begin to overlap and blend with each
other, and by 1000 agents the system is in a constant state
of instability, especially far away from the seed.

For each network size, we also computed the proportion
of time that each agent spent in error, as a function of the
total time. Figure 4 (left) shows these results for each net-
work size, with the agents ordered by increasing (error-free)
gradient values. Each line represents an average over all the
trials for that network size. It is clear from these plots that
proportion of time spent in error increases with the distance
from the seed in an exponential fashion. The curves corre-
sponding to 504 and 1001 agents (magenta and cyan, respec-



Figure 3: Plots for di↵erent sizes of collectives, showing how
errors are linked together spatially and temporally. See Sec-
tion 4.2 for details.

tively) exhibit a seemingly anomalous trend at the highest
gradient values, where the proportion of time spent in er-
ror decreases. However, this is likely to be an artifact and
limitation of the experimental setup: Overlapping negative
error cascades may bring an agent’s gradient value down by
6 units, in which case they would display the same color as if
they were not in error, due to the repeating cycle of 6 colors.

Figure 4 (right) shows another perspective of these results
for a single trial with a 1000-agent network. The agents are
ordered spatially, and the proportion of time in error is indi-
cated by their color. Figure 4 (right) exhibits an interesting
‘star-like’ pattern. This is a result of the agents’ hexagonal
configuration, and will be explained in the next section.

4.3 Error Causes and Propagation
Spontaneous errors may be either positive or negative. In

the former case, an agent transmits a gradient value higher
than its actual one, while in the later case, it transmits a
lower value. In this section, we will discuss the potential
causes of both types of spontaneous errors, and qualitatively
analyze their propagation mechanisms.

4.3.1 Positive Errors are Damped
A common cause of spontaneous positive errors is mes-

sage loss, the presence of which is expected in most net-
works. In the gradient algorithm, each agent is anchored to
its gradient value by a number of neighbors, which are the
ones providing the agent with its minimum neighbor gradi-
ent value. If an agent fails to receive a message from all of
its anchoring neighbors during any one period, then, assum-
ing everything else to be error-free, its minimum neighbor
gradient value in that period will be equal to or higher than
its own error-free gradient value. Adding one to this value
results in a spontaneous positive error by at least one unit,
which is transmitted throughout the following period. Since
a spontaneous positive error occurs only if an agent fails to
receive a message from all of its neighbors during a period,
its occurrence is expected to be relatively unlikely.

The propagation of positive errors is also unlikely, because
the gradient algorithm uses a min() function. Consider the
scenario where an agent receives a value that is in positive
error from one of its anchoring neighbors in a given period.
The e↵ect of this is canceled out if in the same period, the
agent receives at least one correct anchoring value from an-
other anchoring neighbor, since this is lower that the erro-
neous values and will thus be selected by the min() function.

4.3.2 Negative Errors are Amplified
Spontaneous negative errors cannot be caused by mes-

sage loss; their cases are more subtle and rarer. In a system
such as the one we are considering, where agents consider
or discard messages based on the distance of the originating
agents, one potential cause is noise on the distance sensing.
An agent receives a message from another agent with a lower
gradient value than its anchoring neighbors, and misjudges
the distance of the originating agent to be within the dis-
tance threshold. It assumes this value to be its minimum
neighbor gradient value, and this results in a lower own gra-
dient value than the true one. A second cause of spontaneous
negative errors may be subtle bugs in the algorithm imple-
mentation, such as the potential for race conditions due to
the presence of interrupt handlers. A third cause of spon-
taneous negative errors is message corruption. The agents



Figure 4: Left: Proportion of time spent in error by agents sorted by error-free gradient value, for increasing network sizes.
Right: Proportion of time spent in error by 1000 agents arranged in a 2-dimensional hexagonal configuration.

typically use a checksum to determine if a received mes-
sage has been corrupted by the channel; nevertheless, with
any error detection/correction code, there is still a non-zero
probability of a mistake.

Unlike spontaneous positive errors, spontaneous negative
errors are highly contagious. This is due to the min() func-
tion used by the algorithm. If an agent receives a message
with a lower value than its true anchoring value during some
period, this will definitely corrupt the subsequent period,
and cannot be canceled out by a message with the correct
anchoring value (as opposed to the case for positive errors).
The ‘infection’ due to a spontaneous negative error propa-
gates both spatially and temporally.

Spatially, an agent that makes a negative error infects all
the neighboring agents that it is anchoring. These, in turn,
infect all their neighboring agents that they are anchoring,
and so on, leading to a spatial snowball e↵ect (Figure 5, cen-
ter). As an alternative point of view we can consider the set
of agents whose spontaneous negative errors could propa-
gate to a given agent, that is, the region of influence (ROI).
Figure 5 (right) shows two example ROIs for a hexagonal
configuration of agents. The ROI grows with distance of the
agent from the seed. Agents on the axes are only are only
a↵ected by the agents in between the seed and themselves;
hence, the ROI in this case grows linearly with the distance
from the seed. However, all other agents are a↵ected by a re-
gion that grows with the square of the distance from the seed.
This phenomenon explains the results shown in Figure 4.

More surprisingly, our experimental results showed that
negative errors also propagate temporally. If the network
were synchronous, one period in error by a transmitting
agent would cause one period of a receiving agent to be in er-
ror. However, asynchrony greatly exacerbates the temporal
propagation of negative errors; a phenomenon that has not
so far been considered by analytical models. As shown in
Figure 5 (right), each period of a transmitting agent in gen-
eral overlaps with two periods of a receiving agent. A single
infected period of the transmitting agent may infect either
one of these two overlapping periods of the receiving agent,
or both. This depends on the phase di↵erence between the
periods of the transmitting and the receiving agents, and
on how the transmitted infected messages are distributed
throughout the period of the transmitting agent. In the
worst case scenario (Figure 5 right, top), a single-period
spontaneous error by some agent causes the agents that it is
anchoring to be in error for two periods, which in turn cause

the agents that they are anchoring to be in error for three
periods, and so on. In an ‘average’ case scenario (Figure 5
right, bottom), sometimes one infected period of a transmit-
ting agent only infects one period of a receiving agent. In
this case, the number of infected periods grows more slowly
with the distance from the originating error than the worst
case scenario. Note that a single-period spontaneous error
originating from one agent may cause another agent down
the line to have non-consecutive periods in error (i.e., the
infection can ‘split’). This is a counterintuitive phenomenon
that has not yet been predicted by analytical models.

We have discussed how spontaneous negative errors are
caused by rarely-occurring events. In some cases, the rate
of occurrence of such events may even be controlled - for
example, the probability of accepting a corrupted message
can be reduced by introducing more redundancy in the mes-
saging protocol. Owing to their rare nature, these errors
have not so far been seriously considered in analytical mod-
els. However, as the network size increases, even extremely
unlikely events begin to occur frequently. In the next sec-
tion, we will present a scaling law that shows that for large
networks, reducing the individual rate of errors has very lit-
tle e↵ect on reducing the overall rate of errors. This, along
with the fact that these errors propagate spatially and tem-
porally, means that reducing the individual error rate is not
a viable solution for achieving system stability.

5. MODELING ERROR PROPAGATION
The experiments discussed in the previous section demon-

strated that negative errors are an Achilles’ heel of the gradi-
ent algorithm. As such, it is critical to understand precisely
their propagation mechanism and quantify their e↵ect on
the algorithm’s performance. This is a first step towards
systematically investigating how the algorithm’s resilience
to these errors could be improved by making optimal trade-
o↵s (as opposed to ad-hoc modifications).

In this section, we develop an analytical model of the gra-
dient algorithm on 1-dimensional networks that takes into
account spontaneous negative errors and their spatial and
temporal propagation . In particular, we answer the ques-
tion: in a linear network of agents executing the gradient
algorithm, given an individual spontaneous error probabil-
ity, what is the expected proportion of time that each agent
spends in error as a function of its distance from the seed?
We validate this model through experiments in which spon-
taneous negative errors are injected at controlled rates.



Figure 5: Left: Regions of propagation (ROP) for spontaneous negative errors. Yellow agents represent a source of a
spontaneous error; red agents represent its ROP. White arrows indicate which agents (may) infect which. The purple agent is
the seed. Center: Regions of influence (ROI) for spontaneous negative errors. Yellow agents represent ‘victim’ agents; blue
agents represent their ROI. The purple agent is the seed. Right: Temporal propagation of spontaneous negative errors.

5.1 Spontaneous Error Model
We consider spontaneous errors that are uncorrelated both

spatially and temporally. In other words, the probability of
an agent making a spontaneous error in a given period does
not depend on (i) whether any other agents are also making
errors, and (ii) whether the agent had made any sponta-
neous errors in the preceding periods. We assume that an
agent makes an error in a given period with probability 1/K,
where K 2 R and K � 1. We can obtain a good approxi-
mation for the mean time between spontaneous errors in a
collective of N agents by neglecting the asynchrony between
the agents’ periods, which is a valid approximation as long
as K/N is not very small. Since the probability of one agent
making a spontaneous error in one period is 1/K, the prob-
ability of at least one agent making a spontaneous error in a
one-period window is: 1�(1� 1/K)N . Therefore, the mean
time between spontaneous errors in the collective is:

E(�) =
T

1�
�
1� 1

K

�
N

seconds (1)

Note that N has a much larger e↵ect on E(�) than K. For
example, in a 1000-agent network with T = 2 seconds and
K = 100, we have E(�) = 2 seconds. Increasing K tenfold
to 1000 only improves E(�) to 3.16 seconds.

Figure 6: Messaging model approximating CSMA/CD.

5.2 Messaging Model
In general, one period of a transmitting (Tx) agent over-

laps with two periods of a receiving (Rx) agent (see Fig-
ures 5, right, and 6). Therefore, the gradient value from
one period of an agent may reach either one or two periods
of a neighboring agent. Let the probabilities of these two
events be p

1

and p

2

, respectively; naturally p

1

+ p

2

= 1. We

will give three examples of obtaining p

1

and p

2

from a given
messaging model.

Example 1: One Message Per Period. Consider the case
where during each period, an agent transmits exactly one
message. In this case, p

1

= 1 and p

2

= 0. Note that this is
irrespective of when the message is sent out - it could be at
a fixed time during the period (e.g., the midpoint), or at a
random time with any given distribution.

Example 2: Continuous Transmission. Consider that dur-
ing each period, n messages are transmitted spaced at reg-
ular intervals of T/n seconds. We naturally expect that as
n ! 1, p

1

! 0 and p

2

! 1.
Example 3: Randomly-Distributed Messages. We now look

at a model that is intended to approximate the CSMA/CD
protocol used by the Kilobots (Figure 6). In every period,
an agent transmits m messages, whose locations within the
period are governed by a uniform random distribution. In
general one period of the transmitting agent overlaps with
two periods of the receiving agent, as shown in Figure 6.
For only one period of the receiving agent to receive any
message, the m messages from the transmitting agent must
either all fall within the first ⌧ portion of the transmitting
agent’s period, or all during the final T � ⌧ portion. Let p

⌧

and p

T�⌧

denote the probabilities of these two events occur-
ring, respectively. By observation of Figure 6, we have:

p

⌧

=
⇣
⌧

T

⌘
m

, p

T�⌧

=

✓
T � ⌧

T

◆
m

, 0  ⌧ < T (2)

Note that for a specific value of ⌧ , the probability that only
one period of the receiving agent is infected is p

1,⌧

= p

⌧

+
p

T�⌧

, while the probability that two periods of the receiving
agents are infected is p

2,⌧

= 1� p

1,⌧

.
However, as the asynchrony between robots is assumed to

be unknown, we do not wish for our equations to depend
on ⌧ . Therefore, we can obtain an average-case scenario
by marginalizing over all possible asynchronies 0  ⌧ <

T . This gives us the average case probabilities that the
messages originating from one period a given agent will reach
its neighbors in either only one period (p

1

), or two periods



(p
2

). We have:

p

1

=
1
T

TZ

0

(p
⌧

+ p

T�⌧

) d⌧ (3)

Evaluating the integral and using p

2

= 1� p

1

, we obtain:

p

1

=
2

m+ 1
, p

2

=
m� 1
m+ 1

(4)

As a check on Equation 4, we can ‘recover’ the results from
the previous two examples. If m = 1, then p

1

= 1 and
p

2

= 0, and we recover the result for one message per period.
As m ! 1, p

1

! 0 and p

2

! 1, approaching the result for
continuous transmission.

The subsequent analysis relies only on p

1

and p

2

as far as
the messaging model is concerned. Therefore, p

1

and p

2

are
abstracting away the details of the messaging model, and
decoupling its details from the rest of the analysis.

5.3 Negative Error Propagation
5.3.1 Time in Error due to One Spontaneous Error
Consider a linear network of agents, and assume that one

agent makes a spontaneous negative error for one period.
This error will propagate to agents up the line (i.e., away
from the seed). We ask the question: for how many periods,
on average, will this spontaneous error cause an agent that
is i units up the line to be in error?. Figure 5 (right, top)
shows that the worst case scenario is i + 1 periods, which
happens when both receiving periods are always infected
(p

1

= 0, p
2

= 1). But if p
1

6= 0, we expect the average case
to be less severe than the worst case (see Figure 5 right,
bottom). It can be shown analytically that, to a very good
approximation with a known error bound, the answer to our
question is:

↵ · (i+ 1) periods, where ↵ =
(1� p

1

)2

(1� p

1

/2)2
(5)

A full derivation of this result is omitted here due to its
length, but is provided in the online supplemental mate-
rial [1]. The principal idea is to compute the generating
function f(z) =

P1
i=0

a

n

z

n, where a

n

is the expected num-
ber of infected nodes i units up the line. This is facilitated
by considering the ‘width’ of the infection at each level i,
which is the di↵erence between the first and the last infected
periods (irrespective of whether the periods in between are
infected), and behaves as a biased random walk.

5.3.2 Time in Error due to All Spontaneous Errors
In a linear network of agents, consider the agent with

error-free gradient value g. This has g � 1 non-seed agents
‘behind’ it (i.e., closer to the seed), namely all agents with
gradient values g � i, i 2 {1, 2, . . . , g � 1}. A spontaneous
negative error made by any of these g � 1 agents will prop-
agate to agent g, and infect it for some number of periods.
Specifically, using the result from the previous section, a
spontaneous error by one particular agent g � i, will on av-
erage infect agent g for ↵ · (i+ 1) periods. We ask: what is
the expected proportion of time for which will agent g be in
error due to all the spontaneous errors originating from the
agents behind it?

Consider a window of K periods for agent g (where 1/K
is the spontaneous error probability). In this window, on

average, each agent g � i will make one spontaneous error.
Without loss of generality, consider one particular period
in this K-period window. The probability that this period
is not infected by a spontaneous error originating from one
particular agent g � i is (K � ↵(i + 1))/K. Therefore, the
probability that it is not infected by any of the agents g� i,
i 2 {1, 2, . . . , g � 1}, is given by the product:

P

g

=
g�1Y

i=1

K � ↵ · (i+ 1)
K

=

✓
K

↵

◆
1�g

g�1Y

i=1

K

↵

� (i+ 1) (6)

The probability that some period from theK-period window
is not infected (i.e., P

g

) approaches the expected proportion
of non-infected periods by the law of large numbers. The
expected proportion of infected periods is therefore 1� P

g

.
In the rightmost expression of the Equation 6, K and ↵ ap-

pear exclusively as a ratio of each other, i.e., K/↵. This leads
to an interesting observation: Given a spontaneous error
probability of 1/K, and some 0 < ↵ < 1, this is equivalent
to a continuous messaging model (i.e., p

2

= 1 =) ↵ = 1)
but with a lower e↵ective error probability of 1 in K/↵.

Equation 6 is already an expression for P
g

; however we can
obtain a closed-form expression for P

g

if we allow for a slight
approximation. In the rightmost expression of Equation 6,
note that the product term has the ‘flavor’ of a factorial
function (or more specifically, a binomial coe�cient). How-
ever, K/↵ is not in general an integer, and so instead we
use the Gamma function, which extends the domain of the
factorial function to the real line. Defining K̂ = K/↵, we
obtain after some manipulation:

P

g

=
K̂

1�g

K̂ � 1

�
⇣
K̂

⌘

�
⇣
K̂ � g

⌘ ⇡ K̂

�g

�
⇣
K̂

⌘

�
⇣
K̂ � g

⌘ (7)

Finally, we can use Stirling’s approximation to the Gamma
function, ln(�(x)) ⇡

p
2⇡/x (x/e)x. Applying this to Equa-

tion 7 and rearranging using the laws of indices gives:

P

g

⇡ e

�g

 
K̂

K̂ � g

!
ˆ

K�g� 1
2

(8)

5.4 Experimental Validation

5.4.1 Experimental Setup and Protocol
We performed an experimental validation of the mathe-

matical analysis discussed above. In particular, we validated
Equation 8 with di↵erent spontaneous negative error prob-
abilities. 104 Kilobots were used, arranged linearly with
the seed located at one end. Each agent was supplied with
its true (i.e., error-free) gradient value, which was stored in
non-volatile memory. The parameter settings for the gra-
dient algorithm were the same as those described in Sec-
tion 4.1. The distance threshold of 40 mm now meant that
every agent would only listen to messages from its two im-
mediate neighbors (one for the edge agents). At the end of
each period, after computing the minimum of its received
values + 1, each agent would generate a random number
and, with a 1/K probability, it would transmit a value of 1
below its computed value for the following period. Other-
wise, it would transmit its regular value.

Four sets of experiments were run with di↵erent values of
K, namely 100, 467, 1508, and 4629. For each value, 5 tri-
als were run lasting 30 minutes each. The agents displayed



Figure 7: Left: Proportion of time spent in error for agents arranged in a linear configuration. Solid and dotted lines represents
theoretical predictions and experimental results, respectively. Error bars indicate standard deviations. Right: Error of model
fit vs parameter ↵. The solid and dashed red lines correspond to the theoretically-predicted and the experimental minima,
respectively.

one of three colors: green if its algorithmic gradient value
matched its error-free gradient value; red if its algorithmic
hop count was lower than its error-free gradient value, and
blue if it was higher. An overhead camera was used to gather
this data, and tracking was performed to extract the infor-
mation.

5.4.2 Results
The results are presented in Figure 7 (left). The colors

blue, red, yellow and purple correspond to spontaneous er-
ror rates of 1/K where K =, 100, 467, 1508, and 4629, re-
spectively. Solid and dotted lines represents theoretical pre-
dictions and experimental results, respectively. Error bars
indicate standard deviations. The theoretical results cor-
respond to a value of ↵ that was calculated according to
Equation 5 with the probabilities given by Equation 4 (with
m = 8) (a value of 0.76). Qualitatively we observe a very
good fit for all values of K. The standard deviation seems
to increase with increasing values of K (i.e., lower sponta-
neous error probabilities), and for a given value of K, seems
start out small at low distances from the seed, then increase,
and finally drop again (e.g., for K = 467, it increases until
around h = 40).

In order to test the accuracy of the messaging model we
performed a line search over ↵ and for each value computed
the error of model fit according to:

↵

⇤ = argmin
↵

X

K2K

NX

i=1

|t
experimental

� t

theory

(↵) | (9)

where K = {100, 467, 1508, 4629} and N = 103 is the num-
ber of non-seed agents used in the experiments. The result
is shown in Figure 7 (right). The dotted line corresponds to
the theoretical value of ↵, while the solid line corresponds
to the optimal value that minimizes the error of fit.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have developed a better understanding

of a well-known collective behavior–the gradient algorithm–
by testing it on 10� 1000 physical agents. The experimen-
tal results revealed that this algorithm is highly sensitive
to single, short-lived errors, which propagate both spatially

and temporally, causing cascades. Despite these errors be-
ing extremely rare individually, as the scale of the system
increases, they begin to happen with a higher frequency,
and prevent the system from stabilizing. Additionally, the
experimental results showed that the asynchronous nature
of the agents greatly exacerbates the temporal propagation
of these errors - a phenomenon that had hitherto not been
considered in analytical models of this algorithm.

Given the rapid expansion of error cascades that we demon-
strate in this paper, any mitigating solution will require de-
tecting errors near the error source. However, the exact
solution will depends on the error model; for instance, iso-
lated errors can be solved by requiring multiple confirma-
tions, but rare bursts of errors may require tracking per-
neighbor gradient value stability. Nevertheless, in all cases,
the solutions trade o↵ speed of responsiveness to real changes
with the ability to prevent cascades from starting—a kind
of accuracy-speed trade-o↵. Current error-mitigating strate-
gies rely on ad-hoc, heuristic rules. By analytically investi-
gating and quantifying multiple error models, we intend to
provide in future work systematic, Pareto-optimal solutions
for damping error cascades e↵ectively.

The results in this paper highlight the critical need for
closing the gap between theory and practice in multi-agent
systems, through the use of testbed systems in controlled
environments.
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