
Multi-Feature Collective Decision Making in Robot Swarms
Robotics Track

Julia T. Ebert
Harvard University
Cambridge, MA

ebert@g.harvard.edu

Melvin Gauci
Harvard University
Cambridge, MA

mgauci@g.harvard.edu

Radhika Nagpal
Harvard University
Cambridge, MA

rad@eecs.harvard.edu

ABSTRACT
Collective decisionmaking has been studied extensively in the fields
of multi-agent systems and swarm robotics, inspired by its perva-
siveness in biological systems such as honeybee and ant colonies.
However, most previous research has focused on collective decision
making on a single feature. In this work, we introduce and investi-
gate the multi-feature collective decision making problem, where a
collective must decide on multiple binary features simultaneously,
given no a priori information about their relative difficulties. Each
agent may only estimate one feature at any given time, but the
agents can locally communicate their noisy estimates to arrive at
a decision. We demonstrate a decentralized algorithm for single-
feature decision making and a dynamic task allocation strategy that
allows the agents to lock in decisions on multiple features in finite
time. We validate our approach using simulated and physical Kilo-
bot robots. Our results show that a collective can correctly classify
a multi-feature environment, even if presented with pathological
initial agent-to-feature allocations.

KEYWORDS
Collective decision making; heterogeneous collectives; task switch-
ing; Kilobots
ACM Reference Format:
Julia T. Ebert, Melvin Gauci, and Radhika Nagpal. 2018. Multi-Feature Col-
lective Decision Making in Robot Swarms. In Proc. of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018),
Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION AND RELATEDWORK
Collective systems in nature are ones in which a large number of
relatively simple agents interact with each other to produce complex
behaviors [3]. Decisionmaking is a key behavior that appears across
many of these systems and has been extensively studied over the
past few decades [4]. In general, the agents are required to choose
one out of multiple options present in their environment. They have
some means of obtaining noisy information about these options
and of influencing each other directly through communication
or indirectly through stigmergy to achieve consensus on a single
decision [22].

One of the best-known examples of collective decision mak-
ing is the nest or shelter selection problem in insect colonies, also
known as house hunting. The colony must choose exactly one out
of a number of options of potentially different qualities—ideally

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

picking the highest-quality option. For this reason, the problem
is often called a best-of-N problem. The nest selection process is
well-documented in honeybees [13, 17–19], and recently, a cross-
inhibition mechanism was discovered in this system and identified
as a key for its success [20]. House hunting is also performed by
ants, and it has been demonstrated that certain species can reliably
solve the best-of-N problem with a low probability of the colony
splitting [6, 21] by using stigmergy in the form of pheromone trails.
Halloy et al. [9] used robots to explore the shelter selection problem
in cockroaches. Naturally, cockroaches prefer darker shelters over
lighter ones. The researchers introduced a group of robots coated
with pheromone such that they were accepted by a group of cock-
roaches as conspecifics. The robots, being programmed to prefer
the lighter shelter, were able to socially influence the cockroaches
so that they, on average, also made this ‘unnatural’ choice.

In many of these scenarios, it is not sufficient to simply approach
consensus. At some point, the decision must be ‘locked in’, allowing
the collective to move on to the next task; for example, the bees
or ants must start emigrating and moving their larvae to the new
site. In the context of bacterial colonies, this process is known as
quorum sensing [11, 25].When the concentration of an extracellular
signaling molecule produced by the bacteria crosses a threshold,
the colony can move from stasis to an active state.

The collective decision-making problem in its “best-of-N ” form
has also been studied within the context of robotic systems. Parker
and Zhang [12] studied a scenario in which a group of robots is
expected to choose the best out of a number of unequal options.
The robots employ an active recruitment strategy that relies on
inter-robot communication. The robots start by looking for options
and advocating them to each other, always switching their selection
to the best of the known options. Once a robot’s selection becomes
sufficiently popular (reaching a quorum), the robot becomes com-
mitted to it. This enables the group to reach a consensus where all
robots have locked in decisions. Hamann et al. [10] studied how a
homogeneous group of robots can collectively choose between two
global maxima in a light-intensity field. In their algorithm, each
robot moves in a straight line until it encounters another robot.
Then, it stops and counts the total number of robots in its neighbor-
hood. If this is above some threshold, the robot measures the light
intensity and waits for a time proportional to this intensity. This
creates a positive feedback effect which enables symmetry breaking
between the two options. Valentini et al. [24] studied a swarm of
robots that collectively choose among two unequal options. At any
moment in time, each robot has an opinion about which option is
best. The robot either explores the option, or exchanges information
with its neighbors. In the latter case, the robot locally broadcasts its
opinion for a duration that is proportional to the perceived quality



of the preferred option, analogous to the honeybee waggle dance.
The robot also monitors incoming messages for a fixed time period,
and then updates its opinion using the majority rule. The robot
then switches to exploring the potentially new option, and the
process repeats indefinitely. The results showed that the collective
approaches consensus with high accuracy.

Recently, Valentini et al. [23] studied a modified version of the
collective decision making problem on a robotic system, in the
form of feature detection. The agents are able to sense color in a
black-and-white environment and are required to estimate whether
the environment contains more back or white area. Each agent
makes individual estimates of the feature and shares it globally
with all other agents (i.e., communication is global). The agents
then aggregate the estimates of other agents to form a belief about
which color is more prominent. Several aggregation mechanisms
were investigated in simulation and on a group of 20 e-puck robots,
resulting in different speed/accuracy trade-offs.

One limitation of the work in [23] is that it relies on global com-
munication, whereas collective systems in nature exploit the use
of only local communication to achieve scalability [2]. Moreover,
the work in [23]—as well as all the others mentioned above—only
investigate the case where the collective is asked to make a sin-
gle decision. However, collective systems in nature are capable of
handling multiple tasks simultaneously, adaptively allocating in-
dividuals as required to complete these tasks [7, 8, 14, 21]. In this
work, we introduce and investigate the multi-feature collective deci-
sion making problem. We present a scenario in which the collective
must make decisions about three color features in an environment
using only local communication, extending the scenario in [23].
We also demonstrate a decision making rule and a dynamic task
allocation strategy that allow the agents to lock in decisions in
finite time.

2 PROBLEM DEFINITION AND MOTIVATION
We consider N agents that move in a 2-dimensional environment,
with boundaries that are detectable by the agents. The environment
contains M features that individual agents have a means of esti-
mating. The features may either be inherently binary-valued, or
else the agents must have some agreed-upon threshold for making
them as such. The features can thus be represented as functions:

fi : S → {0, 1} , i ∈ {1, 2, . . . ,M} (1)

where S is the environment. We can group the features into a
vector-valued function over S:

f (S) = [f1 (S) , f2 (S) , . . . , fM (S)]T (2)

The features are defined over the environment as a whole. Exam-
ples of features include the ratio of white area to the total area in a
black-and-white environment (as in [23]), the entropy of a pattern,
and the amount of curvature present in a pattern. It is assumed
that the agents have some means of making (noisy) estimates of
the features. Considering the above examples, the color fill ratio
feature can be estimated by calculating the ratio observed over a
random walk; the entropy ratio might be estimated by calculating
the amount of regularity observed over a straight-line motion; and
the curvature might be estimated by performing edge following
whenever an edge is detected, and calculating the average radius of

curvature. In this work, we focus on features of the type of the first
example discussed above (color fill ratio). Specifically, the feature
is locally defined at every point (x ,y) in the environment, mapping
the point onto a value in {0, 1}. The binary value of the feature over
the whole environment is defined as the rounded value of the fill
ratio:

fi (S) = round
{

1
|S|

∬
S
fi (x ,y)dA

}
, (3)

where |S| is the area of the environment and round(∗) is the usual
rounding function, outputting 0 if ∗ < 0.5, and 1 otherwise. In other
words, fi (S) assumes whichever one of the two values is more
prevalent in the environment. Obtaining estimates for features of
this type is straightforward: the agent simply samples a subset of
points over the course of a random walk.

The agents are limited in what actions they may take. Each agent
is capable of estimating every feature in the environment, but is
restricted to estimating only one feature during each observation
period (defined later in Sec. 4.1). This limitation is mainly imposed
because in general, estimating different features may require dif-
ferent motion patterns; moreover, in practice the computational
power available on simple physical agents may not be enough to
sense and process all the features at once.

The agents are able to communicate with each other. They may
listen to messages from other agents continuously, but are only
allowed to transmit messages while they are not observing the
environment. Once again, this limitation is imposed because of
the different motion patterns that may be required to estimate the
different features; for example, if agents were to disseminate while
edge following, this might bias their transmission towards other
agents that happen to be performing the same motion pattern in
the same region, and so a random walk would be a more desirable
motion pattern during transmission.

The problem for the collective is to decide on the value of each
feature over the environment as a whole; in other words, to compute
Eq. 2. The collective is required to not only have an estimate that
converges to Eq. 2 over time, but also to make a unanimous decision
in finite time.When collective decisionmaking is used as a primitive
component in a composite behavior, this allows the collective to
move on to the next action.

3 EXPERIMENTAL METHODS
3.1 Agent Model: The Kilobot Robot
We use the Kilobot robot [15] as a basis for our agents. The Kilobot,
shown in Fig. 1, is a miniature mobile robot with a circular body of
diameter 33mm, developed specifically for use in collectives.

Motion. The Kilobot is capable of noisy locomotion in a straight
line at approximately 1 bodylength/s and turning on the spot in both
directions, completing a full turn in approximately 10 s. Kilobots
are individually calibrated for motion, but in practice straight-line
motion is inaccurate over long ranges, and both straight-line and
turning speeds exhibit significant variation among units.

Communication. Kilobots can communicate with each other lo-
cally, transmitting to and receiving from neighbors within a 3 body
length radius. Each robot is assigned a unique ID at initialization,
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Figure 1: An example of Kilobots in a 2.4 × 2.4m (75 × 75
bodylengths) arena. Kilobots can communicate to others
within a radius of approximately 3 body lengths.

allowing their messages to be identified by receivers. They are ca-
pable of communicating at a rate of up to 10messages/s, although
this rate decreases at higher robot densities.

Light Sensing. The only environmental sensor on the Kilobot
is an ambient light sensor. Therefore, in our setup we use light to
represent the environmental features to be estimated.

3.2 Simulation Platform
To perform experiments in simulation, We extended a simulator for
the Kilobots originally developed by Espinosa and Rubenstein [5].
This simulator can run experiments with 100 Kilobots 20 x faster
than real-time. It implements the kinematics of the Kilobot’s motion
described above, as well as ‘pseudo-physical’ collision resolution, in
which Kilobots turn on the spot if they collide with each other. The
ambient light sensor is emulated by directly feeding the Kilobot the
light intensity at its position, and for single feature estimation, we
use black and white (i.e., minimum and maximum brightness) areas
to represent the two feature values. For multi-feature estimation, we
virtually extended the light sensor to detect three different colors:
red, green, and blue (see Fig. 2). All simulations were conducted
in a 2.4 × 2.4m environment (approximately 75 × 75 bodylengths).
This environment is padded by a 50mm thick border with a gray
light value, such that the agents have a means of knowing then
they have left the environment.

3.3 Physical Platform
Physical Kilobot robots move using two vibration motors, based
on the principle of stick-slip locomotion. Their communication
channel is implemented using an infrared transceiver located at
the bottom of each robot. Channel sharing is achieved using a
CSMA/CD protocol. The light sensor on the physical robots reports
the ambient light intensity with a 10-bit resolution.

Physical experiments were run on a whiteboard surface of 1.2 ×
1.2m An overhead projector was mounted over the surface, which

allowed us to project a light pattern onto the surface. The Kilobot’s
light sensor is sensitive enough to distinguish three levels of bright-
ness: we used two levels to implement the pattern (black and white),
and one to define the boundary of the arena (gray). The thresholds
for distinguishing light levels were automatically calibrated for
each robot before each experiment. An overhead camera was used
to record the experiments.

4 SINGLE-FEATURE DECISION MAKING
4.1 Algorithm
The goal of the single feature algorithm is for the collective of agents
to combine their noisy estimates of a binary-valued environment
feature, arrive at a consensus over its value, and lock in a final
decision in finite time; that is, 100% of the agents must agree on
the same answer. Our algorithm consists of five components that
we detail below. An overview of the agent behavior is shown in
Fig. 3. In the following description, we represent the binary-valued
feature in terms of colors, with black and white corresponding to
the values 0 and 1, respectively.

1. Individual Motion. For the duration of the experiment, agents
move in a random walk, with a straight component drawn from an
exponential distribution with a mean of 240 s, followed by an on-
the-spot rotation sampled uniformly from [−π ,π ) rad. If an agent
enters the gray border region, it returns to the arena by turning
until it no longer detects gray. Recall that agents move forward at
1 bodylength/s and turn at approximately 0.63 rad/s.

2. Estimate and Confidence. An agent makes an estimate of the
feature in the environment during a 60 s observation window by
counting the time spent detecting black or white; it pauses its
observation timer during any time spent in the gray border region.
At the end of an observation period, the agent computes the ratio of
white (n1) to total (n0 +n1) observation duration. The confidence in
this estimate is set to be minimum when the observation duration
ratio is 0.5, andmaximumwhen it is 0 or 1. It scales linearly between
these points. Formally, we define:

e = round
{

n1
n0 + n1

}
, c =

max {n0,n1}
n0 + n1

An agent then enters a dissemination period during which it sends
messages containing its ID and feature estimate. The duration of the
dissemination period is set to c × 120 s; that is, the more confident
an agent is in its estimate, the longer it disseminates it. An analog of
this concept is demonstrated in nature, such as the waggle dance in
honeybees [16]. Following a dissemination period, an agent begins
a new observation period.

3. Belief. During both observation and dissemination periods, an
agent receives estimates from other agents. It stores the agent ID
and estimate in memory for 180 s. If an agent is heard from more
than once within 180 s, only its most recent estimate is kept. At the
end of a dissemination period, an agent computes its belief to match
the majority of estimates in its 180 s memory, selecting a random
belief if the count of each is equal or maintaining its current belief if
its memory is currently empty. In essence, the agent is integrating
information over the space covered by its neighbors’ random walks.
In every dissemination period except for the first one, the agent



Figure 2: Far left: Single feature homogeneous distribution with a 0.7 fill ratio (i.e., proportion of white cells). Middle left:
Single feature non-homogeneous distribution with a 0.7 fill ratio.Middle right: Generation of a multi-feature environment by
overlaying 3 single-feature distributions. Far right: multi-feature environment with RGB fill ratios (0.55, 0.8, 0.65). Colors are
combined according to the standard RGB color model.
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Figure 3: Timeline representing agent behavior during the
collective decision making algorithm.

transmits messages containing its belief in addition to its ID and
estimate.

4. Concentration. Each agent also maintains a belief concentra-
tion C of the feature, which is a moving average that represents its
understanding of the collective’s feature belief. The concentration
is initialized at 0.5 and can range from 0−1. When an agent receives
a message containing a belief b, it updates its concentration if the
sending agent is not stored in memory, for a new concentrationC∗:

C∗ = 0.9C + 0.1b

The concentration represents an integration of the spatial belief
over time, forming a longer-term history than the transient beliefs.

5. Decisions. When the concentration for a feature crosses a
threshold of 0.1 from the extrema and remains there for 30 s, an
agent makes a non-reversible decision about the feature. A con-
centration below 0.1 results in a decision of 0 (mostly black), while
a concentration above 0.9 yields a decision of 1 (mostly white).
Increasing this threshold of After making a decision on the feature,
an agent changes from disseminating its belief to disseminating its
decision; agents receiving this value interpret it the same as a belief
and use it to update their concentrations. This causes positive feed-
back that will increase the average concentration of the collective
and push additional agents toward a decision.

Our algorithm above—in particular components 2 and 3—builds
on the work of Valentini et al. [23]. The most important distinction
is that our algorithm uses local rather than global communication.
It also changes some stochastic computations (e.g., the observation
and dissemination period duration) into deterministic ones; pilot
experiments confirmed that this does not degrade performance.
The notions of concentration and decision-making are not present
in [23]; we introduced these inspired by quorum sensing in natural
collective systems [11, 25].

4.2 Simulation Results
We tested our algorithm in simulation on both (quasi-)homogeneous
and non-homogeneous feature distributions. In a homogeneous
feature distribution, each individual agent estimate arising from
a random walk is expected to represent a good approximation of
the true value. As the environment becomes less homogeneous,
individual agent estimates are expected to become, on average,
less reflective of the true value, and the variance among them is
expected to increase.

Recall that in our environment, the feature values 0 and 1 cor-
respond to the colors black and white, respectively. Therefore, the
fill ratio r of the feature is given by the proportion of white area
present within the environment.

4.2.1 Homogeneous Feature Distribution. To create homoge-
neous feature distributions, the square environment was divided
into a grid of 12 × 12 cells of equal size. To create a fill ratio of
r ∈ [0, 1], each cell was randomly assigned a value of black or white
with probabilities 1 − r and r , respectively, independently of the
other cells; an example is shown in Fig. 2.

We ran simulations with 100 agents, which covers approximately
1.5% of the environment. The initial distribution of agents was
equally spaced within the environment with random orientations;
at this density, agents are roughly 6 bodylengths apart and must
move in order to communicate with each other. We conducted 10
simulations for various fill ratios ranging from 0.5 to 0.9. We also
tested fill ratios below 0.5 to verify the symmetry of the decision
making, but for clarity we only present the upper half of the range.



Table 1: Physical Experiment Results

Trial Time to first Time to last
decision (min.) decision (min.)

1 7:20 42:15
2 7:15 41:00
3 19:35 53:20
4 8:15 34:25
5 11:30 28:10

Mean (SD): 10:47 (5:13) 39:50 (9:25)

Fig. 4 shows the results of 10 simulations for various fill ratios.
The mean feature estimate and belief stabilize within minutes, but
with an average higher belief than estimate. The individual agents’
concentrations rise more slowly over time; in higher fill ratios with
a higher mean belief, the concentration rises faster and this leads to
faster decisions. For fill ratios of at least 0.53, no incorrect decisions
are made; when the fill ratio is at least 0.6, all agents reach the
correct decision within the 150min. trial.

With a fill ratio of 0.5, no collective decision is made. The mean
belief of approximately 0.5 results in concentrations that do not
reach the threshold at either extreme. This means that our algorithm
does not perform symmetry-breaking for truly ambiguous features,
which may or may not be desirable, depending on the application.

4.2.2 Non-Homogeneous Feature Distribution. We implement
a non-homogeneous feature distribution simply by splitting the
environment into two strips, one of each color; an example is shown
in Fig. 2. To achieve a fill ratio of r ∈ [0, 1], the division line is set
such that the area of the white strip as a fraction of the whole area
is r , while the remaining 1 − r fraction of the whole area is black.

We conducted the same experiments as in the homogeneous
feature distribution case. Fig. 5 shows that the resulting mean esti-
mate and belief are lower than for the homogeneous environment,
resulting in slower decision-making. Agents were also less capa-
ble of classifying fill ratios closer to 0.5, with the collective only
consistently making complete decisions for fill ratios of at least 0.7.

The results in Fig. 5 (far left) confirm the expectation that indi-
vidual agent estimates in a non-homogeneous environment will
exhibit a larger variance than in a homogeneous environment. In
our two-section environment, the agents can only make accurate
estimates of the fill ratio when their random walk is close to the
color interface. A random walk that happens to spend most of its
time in one of the two areas will heavily bias the estimate towards
that area, and will incorrectly increase the agent’s confidence in
its estimate. This exacerbates the propagation of the noise in the
estimates into the beliefs, as shown in Fig. 5 (middle left); in turn,
this leads to slower and less accurate decision making.

4.3 Physical Results
We conducted experiments with 30 physical robots in a 1.2 × 1.2m
environment. In each of 5 trials, we projected onto the surface a
randomly-generated homogeneous environment using a grid of
8 × 8 equally-sized cells (as in Sec. 4.2.1). The fill ratio was 0.7. This

physical environment has 25% the area of the simulation environ-
ment, but uses 50% as many robots. The parameters of the random
walk conducted by the robots was modified from the simulation
case to have a straight component drawn from an exponential dis-
tribution with mean 60 s and a turning component drawn from
a uniform distribution between

[
− π

2 ,
π
2
)
rad. This shorter, more

correlated random walk allowed robots to move more quickly after
colliding (in the simulator, collided robots become unstuck quickly
due to the pseudo-physical collision resolution).

For each trial, we recorded the time after which the first agent
made a decision, and the time until all the agents had made a
decision. The results are shown in Table 1. No robots made a wrong
decision in any of the trials. The collective successfully classified
the environment in, on average, less than 40min., with the first
decision appearing, on average, in just under 11min.. There was
significant inter-trial variability in both the time for the first robot
to reach a decision and the time for all robots to decide. This can
likely be attributed to the variation in the feature distributions
between randomly-generated environments, as well as the random
nature of the Kilobots’ motion.

The physical robots exhibited some differences from their sim-
ulated counterparts. Their movement was less consistent than in
simulation, with a straight-line movement that curved to varying
degrees, and an inconsistent turning speed. When robots collided,
they often failed to separate unless they changed to a turning state,
resulting in transient clusters of robots in the environment. Both of
these factors increase the locality of robot movement and decrease
mixing. In addition, the simulator did not account for the noisy
light sensing that was observed on the physical Kilobots. These
differences in movement and sensing likely combine to decrease the
accuracy of the robots’ estimates and beliefs. A video of the physical
experiments is available in the online supplementary material [1];
note that due to some minor imperfections in the surface, and the
Kilobots’ locomotion mechanism (stick/slip with vibration motors),
some robots become stuck and rotate around a single point.

5 MULTI-FEATURE DECISION MAKING
5.1 Algorithm
The algorithm for multi-feature decision-making extends that for
single-feature decision making, with each agent keeping a belief,
concentration, and decision for each of the three color features in
our simulation. Each agent observes a single feature and dissem-
inates its estimate of that feature in addition to the index of the
feature. Agents receive and store estimates for all features from
other agents, which they use to update beliefs for each feature at
the end of their own dissemination period. Agents then transmit all
beliefs in their future messages. New messages containing beliefs
will therefore trigger a concentration update for all features. A
decision on each feature is made from its respective concentration,
independently of the other features.

Feature Switching. On its own, the algorithm described above
would be extremely sensitive to the initial allocation of agents to
features; in the worst case, a feature would never be decided upon
if no agents are allocated to it. Intuitively, it would make sense to
allocate more agents to features that are harder to decide. However,
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dard deviation.) Far left: Mean feature estimate for all agents over time, for differing fill ratios.Middle left: Mean belief for all
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we assume that no a priori information is available about this, and
we therefore introduce a dynamic task allocation mechanism into
the algorithm. While agents can only estimate one feature at a time,
they are allowed to switch between estimating different features.
We consider two options for when this switching may happen:
either before each observation period, or only after a decision has
been made on the current feature. Moreover, we consider three
possibilities for choosing which feature to switch to: the feature
that has a concentration closest to 0.5 (the least certain feature),
the feature with a concentration furthest from 0.5 (the most certain
feature), or a random feature. An agent may not switch to a feature
on which it has already made a decision. If there are no more
undecided features, an agent remains allocated to its current feature.

5.2 Simulation Results
To create multi-feature environments, we overlayed single-feature
environments. Three homogeneous feature distributions were first
independently generated as described in Sec. 4.2.1, but with the
color white replaced with one of red, green, or blue. These three
feature distributions were then ‘added’ together so that every cell
contained between zero and three colors (inclusive). This process
is depicted in Fig. 2 (right two), where the color combinations are
represented visually according to the standard RGB color model.

The collective’s task now is to decide whether each of the red,
green, and blue fill ratios is below or above 0.5. The three fill ratios
were chosen so as to provide features of varying difficulties for the
collective to decide on: red fill ratio = 0.55 (hard); green fill ratio
= 0.8 (easy); and blue fill ratio = 0.65 (intermediate).

We investigated six feature switching laws as discussed in the
previous section, based on two possibilities for when the agents
are allowed to switch between features, and three possibilities for
which feature they switch to:

(1) Agents may switch after deciding on the current feature to
the least certain of the undecided features

(2) Agents may switch after deciding on the current feature to
the most certain of the undecided features

(3) Agents may switch after deciding on the current feature to
a random undecided feature

(4) Agents may switch before each observation period to the
least certain of the undecided features

(5) Agents may switch before each observation period to the
most certain of the undecided features

(6) Agents may switch before each observation period to a ran-
dom undecided feature

For each switching law, we ran simulations with four initial
agent-to-feature allocations: one with an equal allocation of agents
to each feature, and three simulations with all the agents allocated
to a single feature. For each switching law and initial allocation (16
combinations in total), we ran 10 simulation trials with 100 agents
using randomly-generated feature distributions.

We compare the multi-feature decision-making time to a baseline
of 100 agents deciding on each feature, a case of single feature
decision making from Sec 4. When agents are initially distributed
equally between the features, no feature-switching strategy shows
a clear advantage over others. Notably, all remain close to the
reference time to reach decisions.
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Figure 7: Decision-making progress for different feature
switching conditions, with all agents initially allocated to
red. (Left: Decision-making progress for all features. Shad-
ing represents standard deviation. Right: Allocation of
agents between features.)
Top: Agents switch to their least certain undecided feature
after making a decision about their current feature. A few
agents decide for red and switch to green and blue, both of
which are decided faster than red. Fewer than ten agents
were allocated to green for all agents to make a decision.
Middle: Agents switch to their least certain undecided fea-
ture before every observation period. Agents are more
quickly re-allocated to blue and green for a short period
of time, resulting in quicker decisions than when feature
switching only occurs after decisions.
Bottom: Agents switch to their most certain undecided fea-
ture before every observation period. More agents end up
allocated to blue than when agents change the least certain
feature, reducing the accuracy of beliefs about red and pro-
longing the feature’s decision time.



However, when agents are not initially equally distributed, there
is an advantage in decision-making time when agents switch to
the least certain feature at each observation period. For the easier
features (blue and green), this strategy produces quicker decisions
when agents are not initially allocated to those features.

We investigate the reason for this advantage in Fig. 7, which
demonstrates the changes in allocation and decisions over the sim-
ulations when agents are initially allocated to red. This is an expan-
sion of Column 3 in Fig. 6.

Switching features for each observation period instead of after a
decision results in faster decision making because agents are more
quickly reallocated to uncertain features. Looking at the agent
allocation in the middle row of Fig. 7, we see that agents detect red
for the first observation cycle, then switch almost entirely to green
(which, having not been previously observed, is the least certain
feature with a concentration of 0.5). Most agents make a decision
on green before their next observation period because of the large
number of agents dedicated to the task. They then switch to blue
(also unobserved and therefore with a concentration near 0.5) and
make a fast decision before switching back to red. In contrast, in the
top row of Fig. 7, where agents switch features only after decisions,
changes in allocation are much slower + However, in this scenario
there is no cost for switching features; if such a cost existed (for
example, if robots had to move to a new location or replace their
sensor for a different feature), the benefit of switching between
observation periods could be negated.

Switching to the least certain feature produces an advantage
because it prevents over-allocation of agents to easy features. This
can be seen in the contrast between the bottom 2 rows of Fig. 7,
where agents switch to the most or least certain feature for each
observation period. Counter-intuitively, agents that switch to the
most certain feature remain on red until some agents have made a
decision on the feature; belief updates will push the concentration
above 0.5 and make it perceived as the most certain feature. This
delays decision making on other features until agents this perceived
easy feature is decided by a few agents. However, after agents move
to and quickly decide green, they disproportionately switch to blue
instead of red (at approximately 30min. in the bottom right of
Fig. 7). If they decide red while observing blue, they will remain
detecting blue. Compared to agents switching to the least certain
feature, agents are over-allocated to blue. This reduces the accuracy
of estimates (and by extension, beliefs) for red, prolonging the
decision process.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced and investigated the multi-feature col-
lective decision making problem. Our algorithm uses only local com-
munication, and is able to consistently make a correct unanimous
decision in finite time, even on features that are almost completely
ambiguous. The algorithm can correctly classify a number of fea-
tures simultaneously in a multi-feature environment. This holds
even if the algorithm is presented with pathological initial agent-to-
feature allocations, thanks to a dynamic task allocation mechanism.
We examined different types of task switching rules, and identified
the one that works best over various initial allocations.

In future work, we intend to implement multi-feature collective
decision making where the features are fundamentally different
from each other. For instance, the agents could be required to evalu-
ate the color fill ratio, entropy, and curvature of the environment, as
described in Sec. 2. This will also be implemented on larger swarms
of Kilobot robots.
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