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Abstract

Teach a Fish to Swim: Evaluating the Ability of Turing Learning to Infer Schooling Behavior

by Katherine Binney

Turing Learning is a promising evolutionary design method for swarm robotics that uses ob-
servation of natural or artificial systems to infer controllers for agents in a swarm. However, Tur-
ing Learning has thus far only been used to infer very simple swarm behaviors. In this work,
we expand Turing Learning to infer dispersion, a much more complex swarm behavior, by a
simulated school of robotic fish. Turing Learning depends on the co-evolution of replicas and
classifiers. Replicas mimic ideal behavior and classifiers distinguish between data samples from
replica and ideal agents. We model replicas and classifiers with neural networks and investigate
the architecture of each component independently in order to determine needed modifications to
Turing Learning for it to infer fish schooling. We find that previously formulated data samples led
to the inference of behaviors that locally mimicked the agent trajectories in dispersion, yet poorly
mimicked dispersion of an entire swarm. We present three alternative data samples that consider
the spatial arrangement of agents in a swarm. We also introduce three new classifier fitness func-
tions that accelerate evolution of high-accuracy classifiers. We find in a preliminary trial that using
one of our data samples (metrics) and classifier fitness functions (foutputs) enables the successful
inference of dispersion via Turing Learning.
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1 Introduction

Self-organizing systems are abundant in nature. In these systems, many individual units work
together in a decentralized manner to achieve a goal larger than any one individual could accom-
plish alone. Birds fly in large flocks, changing direction on a moment’s notice. Termites build
large mounds. Fish school in the hundreds. These natural systems have provided inspiration to
the field of swarm robotics, which attempts to build robotic systems capable of such collective
behavior and self-organization.

Though we observe great feats of self-organization and collective behavior abundantly in the
natural world, it has proved difficult to design similar behavior in artificial systems. A grand
challenge in the field of swarm robotics has been in the design of a global to local system that can
synthesize local behavioral rules that achieve a macro-level goal. Progress has been made in devel-
oping such a system for particular behaviors in tightly constrained scenarios, but no universally
applicable compiler or system yet exists.

Artificial evolution is one technique that may eventually be used for the automatic global-to-
local transformation. Artificial evolution refers to an optimization procedure inspired by princi-
ples of natural evolution. In these procedures, a set (termed a population) of candidate solutions
is proposed. A candidate solution is evaluated using a function called a fitness function. In the
most simple case, artificial evolution is used to find the input that minimizes a function. In this
case, the population of candidate solutions is a set of real numbers, and the fitness function is
the function to be optimized. In a single generation, all members of a population are evaluated
with this fitness function. Those with the highest fitness are used to influence the next set of can-
didate solutions via random mutation (creating more candidate solutions similar to the highest
fitness candidate solutions) and crossover (combining two high fitness candidate solutions into a
new candidate solution). Over many generations, this approach achieves a search across the pa-
rameter space of candidate solutions. Solutions generated with this approach are said to be learned
or evolved, and the process of finding solutions over many generations learning or evolution. Muta-
tion and crossover of candidate solutions, hallmarks of many evolutionary algorithms, may offer
movement across the search space in a substantially different manner than other heuristic-based
optimization algorithms (De Castro, 2006).

The design of swarm robotics systems provides an interesting search space. When applying
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artificial evolution to robotics, candidate solutions generally are a component of a robot’s con-
troller. The controller is a hardware and/or software system that governs the interaction between
arobot’s sensors and its internal state and observable behavior. An example candidate solution in
robotics is the weights of a neural network that maps a binary set of inputs from a robot’s contact
sensor to its wheel speed. The corresponding fitness function measures the quality of the observed
behavior of a robot, rather than directly examining the generated controller parameters. Continu-
ing with our example, to evolve a robot that moves away from obstacles, a fitness function could
measure the time a robot spends with its contact sensor activated. When used to design controllers
for or physical architecture of robots, artificial evolution is generally termed Evolutionary Robotics.

The design of robotic swarms provides a particularly interesting search space for artificial evo-
lution. Not only are there many possible controllers for an individual robot, there are also often
complex and poorly understood relationships between individual and group-level behavior. Us-
ing evolutionary robotics techniques, we can generate a population of agent-level controllers and
evaluate the fitness of a controller based on the behavior of a swarm of agents using this con-
troller. When candidate solutions are executed on agents in a collective, the relationship between
controllers and group behavior is actualized, and the final group level behavior evaluated to drive
forward evolution. As a result, artificial evolution has become a popular method for designing
collective behavior.

1.1 Turing Learning

One evolutionary learning method, Turing Learning, is promising in its ability to infer controllers
for agents from observation of an entire swarm (Li, Gauci, and Grof3, 2016). Evolution of agent-
level controllers for interesting collective behavior typically requires the use of hand-coded fitness
functions. These fitness functions are based on predefined metrics researchers believe represent
a macro-level behavior. While often successful, such an approach generally requires significant
trial and error or pre-existing knowledge of the dynamics of the collective behavior. Further, the
specificity of fitness functions generally limits the novelty of controllers achieving the desired be-
havior that can be learned. Turing Learning offers a metric-free approach, automatically inferring
individual-level behavior that is important to achieving a collective goal. This technique could
ultimately be used to develop controllers for robots in collectives such that the evolved swarms
mimic a natural system, even if the system is not yet well understood. Turing Learning could
also be used to design controllers for robots that mimic animal behavior despite having signif-
icantly different sensing and movement capabilities than their biological counterparts. Such an

automatic design system will improve the development of effective biomimics: robots intended to
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be integrated into biological systems and socially accepted by the biological agents in the system.
Turing Learning is an approach that simultaneously optimizes a population of classifiers and
a population of replicas. The replicas are controllers for robots mimicking an unknown collec-
tive. The classifiers attempt to distinguish between replica and ideal agents. Competition be-
tween these populations drives the improvement of replicas. The simultaneous optimization of
these populations via evolutionary algorithms has led Turing Learning to be categorized as a co-
evolutionary approach. Turing Learning is inspired by Alan Turing’s proposed test of machine
intelligence. In the so-called "Turing Test," a person questions two hidden subjects and is asked
at the conclusion of questioning to decide which of the two subjects is human (Turing, 1950). In
Turing Learning, a classifier is tasked with distinguishing between data samples generated by
an ideal system (a collective, or swarm, of agents executing a desired behavior) and counterfeit
data samples generated by a replica system (a collective of agents we wish to execute the desired
behavior). Classifiers and replicas that are successful in their respective tasks drive optimization.
Turing Learning has proved able to evolve near-perfect replicas in reactive agents executing
collective aggregation and object clustering behavior (Li, Gauci, and Grofs, 2016). In this work, we
examine the ability of Turing Learning to infer more complex behaviors. In particular, we modify
Turing Learning to infer dispersion behavior executed by simulated robotic schools of fish.

1.2 Fish Schooling

Craig Reynolds” seminal work on flocking in (1987) initiated the development of a large body of
work that attempts to mathematically model the dynamics of movement of schools of fish. Flock-
ing refers to the coordinated movement of a group of agents. In his work, Reynolds proposed three
rules of behavior needed to model flocking: collision avoidance, velocity matching, and flock cen-
tering (1987). Reynolds demonstrated that these simple rules generated animations of flocks that
appeared natural to human observers. Reynolds examined flocking in the abstract. He did not
claim to model the behavior of a particular biological collective. Nevertheless, Reynold’s work
has proved relevant to fish schooling. Later work explicitly used experimental data from observa-
tion of fish to infer dynamics governing movement of groups of fish (Katz et al., 2011). Katz et. al.
found that governing motion as a linear function of pairwise interactions between fish and their
neighbors, a common flocking paradigm informed by Reynold’s work, qualitatively approximates
the spatial dynamics of larger fish collectives, even if it ignores substantial three-body contribu-
tions to dynamics. Recent work in flocking as a general behavior has formalized Reynolds’ three
rules into formal algorithms locally executable by agents in a swarm such that the swarm can

achieve size-tunable mapping and environment-based and leader-based migration (Delight et al.,
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2016).

Models of flocking behavior show promise for designing robotic collectives. Delight et al.
(2016) motivated their behavioral models via a collective of robotic boats intended to execute
ocean-surface mapping. Flocking behaviors in nature, however, are often a 3D phenomenon. Fish
are thus a particularly intriguing natural inspiration for new robotic collectives. Recent work has
demonstrated the possibility of creating aquatic robots for use in a robotic fish collective (Berlinger
etal., 2018).

1.3 Evolving Schooling

The depth of understanding of fish as collectives combined with current novel work in the de-
velopment of robotic test beds has led us to choose to expand Turing Learning to infer behavior
characteristic to fish schooling. In particular, in this work, we identify and overcome some of the
limitations of the current implementation of Turing Learning in its ability to infer the dispersive
behavior of a simulated school of robotic fish. The contributions presented in this work are as
follows:

e The implementation of a Turing Learning system to infer schooling behavior of robotic fish
in simulation. This system is quite modular so that it can be used again in future work.
Modifying the system to infer new behaviors will require only minimal changes. We also
implement an ideal artificial system from which to infer behavior.

e Identification of a mechanism for failures encountered in attempts to directly apply previ-
ous implementations of Turing Learning to our behavior. This failure and the corresponding
cause is likely to be common to many potential applications of Turing Learning in swarm
robots. These limitations thus inform the rest of the work, which proposes methods to over-

come them.

e Verification that the replica model controller architecture proposed in this learning system
is sufficiently expressive. It can behavior reasonably similar to that of the ideal system. We
also present limitations of this architecture and justify its continued use: Its use allows us to
examine the use of Turing Learning in situations where replica and ideal agent capabilities
diverge.

¢ A formulation of alternative data samples to be generated by ideal and replica systems. We
propose three observational data samples on the basis of which classifiers operate. One

data sample, neighbor awareness, is local to individual agents, and is likely to allow Turing
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Learning to infer dispersion but may not be generalizable to other applications. Another
data sample, metrics, is a set of macro-level observations about a swarm. Turing Learning
may have more difficulty inferring dispersion behavior using this data sample, but it is more
likely to generalize to new applications in swarm robots. The final data sample, position,
appears most natural to the promise of Turing Learning’s metric-free approach, but proves

too large to be effective for learning.

e The design and comparison of three new functions for determining the quality of a pro-
posed classifier. We examine the use of these functions to train classifiers to distinguish data
samples from the ideal system executing aggregation and dispersion. All functions are an im-
provement over previous formulations and two, foutputs and fiversity, are shown to evolve a
population of classifiers with extremely high classification accuracy in this context.

e A demonstration that combining two modifications to Turing Learning results in successful
inference of dispersion by a replica swarm in a preliminary trial. We use the metrics data
sample and the classifier fitness function foutpu to successfully evolve a high quality replica

swarm executing dispersion.

The outline of this paper is as follows. Chapter 2 describes related work. Chapter 3 outlines the
implementation of Turing Learning used in this work. Chapter 4 presents experimental results,
including the direct application of previous implementations of Turing Learning to fish school-
ing (Section 4.1), an analysis of replica model representation (Section 4.2), an analysis of classifier
capabilities for a range of fitness functions and data samples (Section 4.3), and preliminary re-
sults of a full trial of Turing Learning using modifications presented and validated in this work
(Section 4.4). We conclude the paper and suggest avenues for future research in Chapter 5.



2 Related Works

This section is organized as follows: We first outline general research areas in collective robotics
to situate this work within the field. We then examine previous works in evolutionary robotics
and Turing Leaning. We conclude with seminal research on flocking and schooling and works
examining the inclusion of replicas in biological schools of fish.

2.1 Taxonomies of Swarm Robotics

In 2013, Brambilla et al. proposed two taxonomies by which to classify swarm robotics research. In
the first taxonomy, they divide works in swarm robotics into works dealing with "design", the cre-
ation of systems, and works dealing with "analysis", the evaluation of a proposed or implemented
system. In the second taxonomy, they categorize the types of collective behaviors evaluated by a
work into spatially-organizing behaviors, navigation behaviors, collective decision-making, and
other collective behaviors (Brambilla et al., 2013). According to their taxonomy, our work ex-
amines automatic design methods: We work to expand Turing Learning from application to the
spatially-organizing behaviors of aggregation and object clustering to the navigation behavior of
coordinated motion.

A more recent review of swarm robotics surveys the research by task, analyzing design meth-
ods, important works, and mathematical models and metrics used in each specified task (Bayimndir,
2016). By Bayindir’s taxonomy, this work contributes to design of flocking algorithms while pre-
vious work on Turing Learning looked at aggregation and object clustering. Bayindir’s work
includes an important aggregation of performance metrics. These metrics vary widely by task
and by paper, even within a single task. This lack of common performance metrics may make
traditional artificial evolution methods, which require metrics to evaluate the success of a model

in achieving its goal, more difficult to design.
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Evolutionary Optimizer

Generates A sets of
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set of parameters
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Parameters Each model generates data

to be passed to fitness

function

FIGURE 2.1: Traditional evolutionary robotics systems have three clear components:
An optimizer, an agent model, and a fitness function.

2.2 Artificial Evolution

We first examine works in evolutionary robotics using traditional evolution systems. The gen-
eral structure of these systems is given in Figure 2.1. A traditional evolution system begins with
an evolutionary optimizer, which is the algorithm that generates a population of size A of candi-
date solutions. Each of these candidate solutions is incorporated into an agent’s controller. The
agent’s behavior is then scored using a fitness function. The fitness score for each agent is then
communicated to the optimizer to inform the next generation of candidate solutions.

2.2.1 Evolution in Collectives

In 2004, Dorigo et al. demonstrated that evolutionary robotics could be effectively applied to
swarm robotics by evolving swarms capable of aggregation and coordinated motion. We summa-
rize the evolutionary system they used to evolve aggregation here. The system to evolve coor-
dination motion was similar. The robots in their system, termed s-bots, had 8 proximity sensors
and 3 sound sensors. The robots constantly emitted a noise and had two independently controlled
bi-directional wheels. The authors modeled the controller of the robot as a single layer perceptron
with 11 inputs (the sensor values) and 2 outputs, which controlled the speed of the two wheels.
They designed an evolutionary optimizer for their system. In it, the 20 (of 100) highest-fitness
controllers in a generation were selected. Each controller was mutated in 5 different ways to form
5 new candidate controllers for the subsequent generation, for a total of 100 candidate controllers
in each generation. The final component of the system was a fitness function that computed the
aggregation and movement quality of agents in a swarm.
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Dorigo et al. (2004) were able to successfully evolve aggregation and, in a subsequent experi-
ment, coordinated motion using this system. They further demonstrated that the evolved behavior
was scalable: It could be used in different sized collectives. This work depends on the assumption
that evolved behavior is scalable, an assumption validated by Dorigo et al. In addition, we use
a similar model for replica robot controllers: a neural network mapping sensor values to move-
ment. However, Dorigo et al. used pre-specified metrics in their fitness function. These metrics
were tweaked after undesirable behavior was evolved in initial trials (2004, p. 228). Deciding on
a particular metric or two inherently limits possible evolved behaviors. While this is often inten-
tional, as researchers choose metrics to drive evolution of a desired behavior, it can be difficult to
determine a metric that allows for both novel controllers and favorable outcomes. In contrast, this
work analyzes the development of an approach that can be applied to multiple behaviors without
spending significant time deciding on which metrics to use.

More recent work in evolutionary robotics applied to swarms has involved evolving robots for
the purpose of real life applications. For instance, Duarte et al. (2016) evolved homing, dispersion,
clustering, and monitoring behaviors for aquatic surface robots. They then analyzed the perfor-
mance of the controllers, which were evolved in simulation, in a real, unconstrained environment
and connected the independently evolved behaviors to allow the robots to execute a proof of con-
cept environmental monitoring task. The robots in this work were small boats intended to operate
in an uncontrolled environment. A waypoint (a known point of interest) and a geo-fence were
placed in the environment. For the purpose of sensing, robots divided the world into equally
sized quadrants. Each robot had sensors that detected (1) the relative angle from a robot to the
waypoint, (2) the distance from a robot to the waypoint, (3) the closest distance from the robot
to another robot in each quadrant, and (4) the distance from the robot to the geo-fence in each
quadrant. The robot controller was a neural network mapping inputs from these sensors to the
robot’s linear and angular speed. The authors optimized candidate controllers using NEAT, an
algorithm that simultaneously optimizes the architecture and weights of a neural network. The
authors created fitness functions for each of the four behaviors learned: homing, dispersion, clus-
tering, and area monitoring. The homing fitness function calculated the average distance from
robots in the swarm to the waypoint. The dispersion fitness function measured the average dif-
ference between the distance between a robot and its closest neighbor and a target value for this
distance. The clustering fitness function measured the number of clusters (closely spaced groups
of robots) formed by robots over the course of a trial, penalizing swarms for having more than
one cluster. Finally, the area monitoring fitness function divided the arena in which the robots
operated into cells, then measured the extent to which each of these cells was visited by a robot in
the swarm over the course of the trial.
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FIGURE 2.2: Turing Learning. Turing Learning is a co-evolutionary algorithm for
evolving behavior that contains many more components than traditional evolution-
ary robotics systems.

In this paper, we work to evolve a dispersion behavior similar to the one specified in (Duarte
et al., 2016). We imagine a similar eventual real-life application, and we use robots with similar
sensing and movement capabilities, though we used a different optimization algorithm and differ-
ent controller architecture. However, like in (Dorigo et al., 2004), Duarte et al. (2016) use directly
specified metrics in fitness calculations. These metrics directly characterize the goal behavior in
terms of the relationship between robots, including the distance between robots and the number
of robot clusters (Duarte et al., 2016, pp. 9-10). Our work instead analyzes an evolutionary algo-
rithm that does not require fully specifying metrics for a behavior. It thus is hypothetically useful
even in situations where behavior is not well understood and one does not know which metrics
may be appropriate.

2.2.2 Turing Learning

Turing Learning is a new approach that has thus far only been verified in a few scenarios. The
original developers of the method proposed Turing Learning as "a metric-free approach to infer-
ring behavior" (Li, Gauci, and Grof, 2016). In Turing Learning, users have an ideal system that
executes a desired behavior. They use Turing Learning to evolve a model that mimics the ideal sys-
tem. Turing Learning does not hand code a similarity measure between replica and ideal system.
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FIGURE 2.3: Ideal aggregation behavior inferred via Turing Learning in (Li, Gauci,
and Grof3, 2016). Agents have a single line of sight sensor through which they can
detect obstacles. Agents move backwards in a clockwise circle unless there sensor is
blocked, in which case they turn in place in a clockwise direction.

Instead, replica and ideal agents generate data samples, such as their trajectories in simulations.
Classifiers attempt to distinguish between genuine data samples (those created by the ideal sys-
tem) and counterfeit data samples (those created by replica systems). The replicas learn to generate
better and better data samples over the course of an evolutionary run as classifiers evolve better
and better ways to distinguish between the samples. "Metric-free" refers to the lack of hand-coded
similarity metrics.

Turing Learning was originally verified on swarms: in their work, Li, Gauci, and Grof3 vali-
dated Turing Learning by inferring aggregation and object clustering behavior. This work builds
upon the framework for Turing Learning proposed by Li, Gauci, and Grof. As in their paper, we
simultaneously optimize a population of classifiers and a population of replica models, using the
classifications provided by classifiers to calculate the fitness of candidate solutions in each pop-
ulation. The high level architecture of Turing Learning can be seen in Figure 2.2. In this work,
we also use Turing Learning to infer swarm behavior; However, we examine a collective behavior
that is significantly more complex than previously studied. Li, Gauci, and Grof$ inferred aggre-
gation and object clustering behavior from agents executing computation-free behavior. Aggre-
gation and object clustering had previously been shown to be swarm-level behaviors that could
be executed without requiring agents to have memory or computation ability (Gauci et al., 2014b;
Gaudi et al., 2014a). In their computation-free manifestation, agents executing aggregation and
object clustering have minimal sensing capabilities. We describe in detail here the algorithm for
computation-free aggregation. The algorithm for object clustering is similar. Each agent has a
single line of sight sensor with possible inputs {BLOCKED, UNBLOCKED}. Aggregation is a reactive
behavior in which each of the two possible inputs maps directly to an agent’s left, v;, and right, v,
wheel speeds. These speeds lie in the range [—1, 1]. The controller for an agent can be represented
as a list of wheel speeds corresponding to the inputs 0 for UNBLOCKED and 1 for BLOCKED. This is
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denoted in (Li, Gauci, and Grof3, 2016) as:

P = (010,710,911, 011) (2.1)

Work by these authors had found the optimal values for p to be (—0.7, —1.0,1.0, —1.0). With
these values, when a robot’s sensor is unblocked, the robot moves backward along a clockwise
circular trajectory. When the sensor is blocked, the robot turns in place in a clockwise direction,
as shown in Figure 2.3. Robots executing aggregation thus will always be moving at one of two
possible velocities.

The methodology for Turing Learning proposed by Li, Gauci, and Grofs provided the classifier
with data consisting of the linear speed, s, and angular speed, w, of a single robot over a simula-
tion. The authors used a recurrent neural network with 2 inputs, 5 hidden neurons, and 1 output
neuron for their classifier. They optimized the replica and classifier populations viaa (s + A) evo-
lution strategy with self-adaptive mutation strengths. In most trials, the authors ran a simulation
containing a swarm of 10 ideal agents and one replica agent. They also, however, demonstrated
that aggregation could be inferred using swarms consisting only of ideal agents and only of repli-
cas. Each classifier i considered the kth data sample from replica j or the /th ideal data sample
and gave a classification output m;j or m;. A classifier output of 1 meant the classifier believed
the data sample to be genuine. Otherwise, the output was 0 and the data thought to be counter-
feit. A replica’s fitness was given as the proportion of classifiers it tricked into classifying its data
samples as genuine. Classifier fitness averaged the proportion of genuine data samples correctly
categorized as such and the proportion of counterfeit data samples correctly categorized as such.
This system can be seen in Figure 2.4. We note that the authors also inferred behavior for replicas
with an alternative controller. In this alternative, the controller was modeled as a recurrent neural
network with 1 input (the sensor value), 1, 3 or 5 hidden nodes, and 2 outputs (the wheel speeds).
Optimizing the replica in these trials consisted of optimizing weights for this neural network.
These trials were all successful.

With Li, Gauci, and Grof3’s chosen artificial system from which to infer behavior, there was
an implicit relationship between sensor input, wheel speed, and data provided to the classifier.
The behavior to be learned in this work has not been shown to have the same implicit relationship
between controller inputs and outputs and robot trajectories. We thus partially examine the extent
to which this implicit relationship played a role in the prior success of Turing Learning in infer-
ring swarm behavior and the ways in which the Turing Learning methodology may need to be
modified for increased generalizability. In our work we vary components of the Turing Learning
system to investigate what pieces of the system implemented in Li, Gauci, and Grofi’s work are
generalizable, and which pieces need to be modified given an intended application.
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FIGURE 2.4: Implementation of Turing Learning used to infer aggregation in (Li,
Gauci, and Grof3, 2016)

To our knowledge, only one other work has attempted to apply Turing Learning to a new
scenario. In a late November 2018 work, Zonta et al. applied Turing Learning to the problem
of modelling human trajectories. They used Turing Learning to develop a generative model of
possible human trajectories in crowded locations. In their system, the population of replica models
was a set of generative networks that could predict the future location of a person given a limited
sequence of that person’s previous locations. Input to the classifier was modified only slightly
from Li, Gauci, and Grofs’s initial paper. Zonta et al. fed the classifier bearing in addition to linear
and angular speed. They ultimately found the original structure for Turing Learning failed to infer
the desired behavior. Modifying the classifier architecture and fitness computation was required
for the effective evolution of good generators (Zonta et al., 2018).

In this work, we examine Turing Learning in the field of swarm robotics. A replica model
is executed on a local agent, but evaluated on the basis of the behavior of a group of robots.
In (Zonta et al., 2018), the authors attempt to evolve a generator of human trajectories. Each
replica generator operates in isolation, rather than in a collective. Small changes to agents in a
collective can lead to very large changes in group behaviors, so replicas with similar parameters
may actually have very different collective dynamics and thus different fitness values. In contrast,
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small changes to replica generators in (Zonta et al., 2018) are more likely to lead to small changes
in generator fitness. Thus, the evolution of collectives via Turing Learning in our work differs
from the evolution of generators via Turing Learning in (Zonta et al., 2018). Despite the distinct
areas of application, we encountered similar challenges in evolving high-quality classifiers and
also found that modifying classifier fitness improved learning speed, suggesting these findings
may be generally applicable.

2.3 Fish Schooling

We apply Turing Learning specifically to the inference of behavior of schools of fish. Fish schooling
is particularly interesting as there exists a large body of work around it. Schooling is a particu-
lar form of flocking (coordinated group motion) behavior, and flocking has been studied from a
variety of perspectives, including observational studies of real fish. In addition, recent work has
investigated the possibility of inserting biomimics into real life schools of fish. Turing Learning
provides a novel way to develop models of flocking and may eventually allow for the develop-
ment of more perfect mimics than those currently in existence.

2.3.1 Flocking

Flocking has been investigated from a variety of perspectives, including graphics (Reynolds,
1987), particle dynamics (Vicsek et al., 1995), and biological systems (Couzin et al., 2005; Katz
et al., 2011). Reynold’s initial work on flocking demonstrated the success of local models of be-
havior in causing interesting global effects. The "boids" (abstract animated objects) in Reynold’s
simulations demonstrated realistic coordinated motion in large groups simply through the execu-
tion of local collision avoidance, velocity matching, and flock centering.

Subsequent work in (Vicsek et al., 1995) contributed a physics-based approach to flocking,
finding that particles moving at constant velocity demonstrate a kinetic phase transition when
they begin to assume the approximate average direction of their neighbors. Coordinated motion
thus does not necessarily require intentional movement around neighbors: simply matching ori-
entation is sufficient for the emergence of directed movement.

Coordination in biological systems requires more intentional movement than possible in the
above models. It is not sufficient for fish to coordinate their movement in a random direction.
Schools must escape predators and move to good locations for feeding. Environment cues in-
fluence the behavior of fish schools. Couzin et al. (2005) find that consensus in motion can still
emerge even when individuals consider information from the environment in addition to the lo-

cation of their neighbors. Further, leaders with more environmental information can influence a
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school to move in a desirable direction without explicitly signaling other school members. The
biological imperative was carried further in (Katz et al., 2011). Couzin et al. (2005) and Reynolds
(1987) demonstrated models that executed realistic flocking behaviors but did not require that
they be the models animals actually execute. Katz et al. explicitly inferred behavioral rules from
experimental data, finding that the averaging of responses from neighbors, a common model, may
not be entirely accurate, though it models the spatial interaction of agents in groups reasonably
well. Instead, Katz et al found that three-way interactions may contribute to schooling dynamics
and may be notable when schools rapidly change direction.

Our work advances a new technique to infer schooling behavior through observation of nat-
ural systems. In the future, this may lead to the development of new understandings of natu-
ral systems or novel mathematical models for artificial schooling. While we do not yet examine
non-pairwise interactions, we anticipate that Turing Learning will be able to do so in the future,
allowing for more systematic analysis of the three-body contribution posited in (Katz et al., 2011).

Models of schooling have recently been applied to robotic systems operating in real life condi-
tions (Delight et al., 2016). Delight et al. formalize the models proposed in prior works into locally
executable behaviors for a swarm of robotic boats intended to map the ocean surface. Their work
includes the leader-follower and environmental dynamics ideas introduced in (Couzin et al., 2005)
to create size-tunable mapping, environment-responsive migration, and leader-responsive migra-
tion behaviors in aquatic surface robots. Delight’s model is particularly well suited to our intended
robotic application. We have chosen to work to advance Turing Learning to flocking behavior by
inferring some aspects of the model laid out in (Delight et al., 2016)

2.3.2 Imposter Fish

Turing Learning generates not simply a desired behavior, but rather a behavior that appears a
perfect mimic of some ideal system. Many biologists are interested in developing robots that are
socially accepted by a biological system. Such robots may allow scientists to determine causality
of animal behaviors through the intentional actions of a robotic agent (Kim et al., 2018). Recent
work examines the impact of biomimetic closed-loop control on zebrafish behavior (Kim et al.,
2018; Cazenille et al., 2018). Biomimetic refers to situations in which synthetic processes mimic
biological ones. Closed-loop control occurs when a system compares its desired outcome with its
actual outcome to inform future behavior. Biomimetic closed-loop control thus refers to processes
that attempt to mimic a biological system and use real-time feedback from the biological system
to improve their mimicry. In (Kim et al., 2018) and (Cazenille et al., 2018), a robot is designed to
visually approximate a live zebrafish and is placed in a tank containing both the robot and biolog-
ical zebrafish. This robot is able to move throughout the tank with the assistance of an external
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system. This external system tracks the biological fish in real time and uses this information to
inform robot behavior. Both works currently depend on pre-specified metrics that determine how
well the robot is being socially accepted by the biological fish. As a result, the robots will never
become better mimics than the current measures of similarity can detect. Cazenille et al. (2018) in
fact notes this as a limitation of the research. By analyzing current limitations of Turing Learning
applied to schooling behavior, we advance its promise of metric-free system inference. In the fu-
ture, this system could be used to achieve the promise of fully socially accepted robots in zebrafish
groups.
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3 Implementation

In this chapter, I present my implementation of Turing Learning for use in learning dispersion
in artificial schools of fish. Turing Learning operates through the simultaneous optimization of
a population of replicas and a population of classifiers. The classifiers are tasked with distin-
guishing between data samples created by genuine agents and data samples created by replicas.
The replicas are tasked with "tricking" the classifiers into categorizing the counterfeit data sam-
ples as genuine. The ultimate goal is that, from an observer’s perspective, the replicas replicate
the behavior of the genuine agents. Algorithm 1 provides a description of Turing Learning im-
plemented in this paper, modified from the algorithm proposed by Li, Gauci, and Grof3 (2016).
Figure 3.1 contains the implementation in diagram form, and indicates the specific section where
each component of the system is defined.

The first choice in this paper’s expansion of Turing Learning was in the system from which
to infer behavior. Ultimately, we hope to infer behavior for robotic fish from biological schools
of fish. However, in this paper, we begin progress to this goal by inferring behavior of simulated
schools of fish executing a known flocking algorithm. We further constrain our research to infer-
ring behavior in two dimensions. This represents an important step towards the ultimate goal
of learning from real fish: the behavior learned is much more complex than previous behavior
inferred via Turing Learning. We thus are able to examine limitations of the current implementa-
tion of Turing Learning using a system from which we can obtain clear data samples with a much
lower cost than a natural, three dimensional system. The exact specification of our ideal system
can be found in Section 3.1.

Turing Learning evolves two populations: replicas and classifiers. The architecture for replicas
and classifiers both must contain parameters that can be optimized through evolution. We specify
the architecture of replicas in 3.2.1 and the architecture of classifiers in 3.2.2. The classifications
given by this model provide the basis for fitness computation. We describe the general framework
of the fitness functions used to optimize each population in 3.2.3. Finally, in 3.2.4 we provide a
brief description of the algorithm that optimizes these parameters and provides candidate solu-

tions in each generation.
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Algorithm 1 Turing Learning Procedure

1: Initialize population of M replicas and population of N classifiers
2: while termination criterion not met do
3:  obtain data samples from ideal agents
for all replicas i € {1,2,.., M} do

obtain counterfeit data samples from replica i
end for
for all classifiers j € {1,2,..., N} do

for each data sample, obtain and store output of classifier j
end for
10:  reward replicas (r,,) for misleading classifiers (classifier outputs)
11:  reward classifiers (r.) for making correct judgments (classifier outputs)
12 improve replica and classifier populations based on 7, and 7.
13: end while

R AL

3.1 Artificial System from Which to Infer Behavior

Our long-term goal is the creation of a robotic school of fish that mimics real schools of fish. Such a
robotic school could be released into a marine environment for monitoring purposes with minimal
disruptive effect on the natural ecosystem. We have focused on designing the behavior of this
collective after recent progress in the design of the physical robot for this task (Berlinger et al.,
2018). In this work, we infer dispersion, a behavior characteristic of fish schooling. Although
dispersion is only a small component of the overall dynamics of schooling fish, it is a significantly
more complex behavior than those previously inferred with Turing Learning. Thus, inferring
dispersion is an important step towards our ultimate goal of inferring schooling behavior from
biological fish. Although we work entirely in simulation in this paper, our intended robotic test

bed informs our simulation design.

3.1.1 Algorithm for Swarm Behavior: Dispersion

Coordinated motion depends on a collective’s ability to maintain internal coherency. Individual
agents can neither approach too close to each other, which would lead to crashing, nor drift too
far apart, which would lead to splitting of the group. Dispersion is the behavior in which agents
in a group move away from each other. Aggregation is when agents move toward each other.
Dispersion and aggregation are important not only in biologically-inspired mimicry, but also in
robotic collectives executing purely artificial tasks. For example, in an aquatic collective, robotic
fish intended to monitor an area could use dispersion to expand a sampling radius and then at

conclusion of a task aggregate to a single pick-up point.
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FIGURE 3.1: Turing Learning Procedure

This paper focuses particularly on dispersion to a pre-specified distance. In this behavior,
agents move away from each other until the distance between agents is consistent with the user-
specified distance. In light of our intended test bed, we use the term fish (pl. fishes) interchange-
ably with the term agent. Delight et al. (2016) recently developed a model for a boat collective that
included a single mathematical model of behavior for both aggregation and dispersion. The initial
spread of agents determines whether the agents aggregate or disperse. Our ideal system is based
off this model.

In this system, fish are modeled as points in space. Each fish has a limited sensing radius and
can only detect other agents within this radius. We decide on an equilibrium distance ¢. Fishes
move away from neighbors closer than ¢ and towards neighbors farther than . When fishes are
initially randomly distributed in a radius r < o, the fishes will have more neighbors within ¢ than
outside of ¢, and so will move apart from each other until this is no longer the case. A visualization
of this behavior can be seen in Figure 3.2. Below, we formally define the functions governing this
behavior. All functions were originally defined in (Delight et al., 2016). We modify the notation
and formulation of the functions only slightly for our particular application.

A fish i is capable of determining the relative position 7;; of a neighbor j. That is, a fish can
calculate a vector from itself to its neighbor. A fish j is termed a neighbor of i if j is within the
sensing radius 7comm of i. The neighborhood, ();, of i is the set of all neighbors of i. A fish i’s position
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FIGURE 3.2: Here we present an image of dispersion. Each color represents a single
agent, which we term a fish. A fish begins at the point marked with a triangle, and
ends at the point marked with a square. Each point on the line connecting triangle
and square is a single time step. The triangles are much more tightly packed than
the squares, hence the term dispersion.

in the XY plane at time ¢ is denoted as the vector X;(t). We thus define relative position and the

neighborhood of i as follows:

7ij(t) = ¥;(t) — %i(t)

o (3.1)
Qi(t) ={j | H”ij(t)H < Teomm }

We model the position and velocity of a fish as a discrete time-process. That is, the velocity of
a fish is updated at a specific interval, and the fish moves at a constant velocity between updates.
This models the capabilities of robots well. They have limited computation ability and so limiting
the processing of inputs to specific intervals aids in maximizing use of that computation ability.
We model the interaction between a fish i and each of its neighbors independently, and sum the
corresponding vectors to determine the final velocity for fish i. Formally, a fish’s position (¥X;(t))
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and velocity (7;(t)) over time are:

5i(t) =Y f(#(t)
je(t) (3.2)
Xi(t+ At) = %;(t) + Ti(t) At

Previous work with this model used three components to compute the time evolution func-
tion f: cohesive attraction, separation-based attraction-repulsion, and environment-based migra-
tion (Delight et al., 2016). We were interested only in aggregation and dispersion, and so only
considered the attraction-repulsion force. The strength of the attraction-repulsion force is medi-
ated by a user-determined constant, k,,. The time evolution function f is thus formally given as
follows:

7ij(t)

F#i(t) = fii(t) = karsgn (||l — ) (||7]] — 0)? =
17 ()]

(3.3)

3.1.2 Selection of Constants Based on Physical Robot Capabilities

This model makes many simplifying assumptions. Robots are assumed to be points in space that
cannot crash. They do not have an orientation. The relative position of a neighbor is calculated as
if all robots face the same direction. We also assume robots can move in any direction. We assume
there is no noise in sensing or movement. Robots see exactly the true positions of their neighbors
and move exactly where they intend. Robots "sense" a list of the positions of their neighbors,
rather than a camera image they must transform into neighbor position. Further, we examine
this behavior in only two dimensions. These assumptions are not realistic and would prevent the
direct translation of learned behavior into actual robots. However, the assumptions enormously
simplify computation, and so have been deemed acceptable for this work. After validating Turing
Learning in this simple scenario, future work can be done in three dimensions with more realistic
physics and robot capabilities.

The chosen behavioral model requires consideration of a series of constants: an update period
At, a communication radius 7comm, a defined equilibrium radius ¢, at which distance neighboring
agents execute no force, and a magnitude constant k. Further, the model naively assumes no
maximum speed, yet robots have a maximum speed v ;4.

This work decided on constants through experimental parameter optimization and considera-
tion of the intended test bed. The intended test bed is a collective comprised of a small, low-cost
aquatic, fish-like robot being developed in the Self-Organizing Systems Research Group at Har-
vard (Berlinger et al., 2018). This robot is approximately 100 mm long x 25 mm wide, can achieve
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a velocity of 0.6 BL/s (body lengths/s), and is operated in a 1.78 m x 1.78 m test bed (considering
the XY plane only). Ideally, robots in this collective could be dropped in a tank close together,
then the robots could independently disperse to avoid collisions prior to beginning a more com-
plex task. The robot in (Berlinger et al., 2018) was operated alone in a tank and had only a very
simple sensor. It would not have been able to detect the position of neighbors if it had had any.
We have thus made assumptions regarding capabilities that will be added in order for this robot
to operate in a school. In particular, we have assumed the ability to detect and determine the
position of neighbors up to 1 m away, approximately equivalent to 10 BL. We also assumed the
robot’s max speed will increase to 0.9 BL/s. It is further important to note that the robot’s small
size partially limits its ability to carry significant computing power, making less frequent velocity
updating preferable.

Given this intended future test bed, we decided on the following constants, implicitly equating
our abstract units to centimeters:

At =1
o =40
Teomm = 100
Viax =9

We decided to execute behavior on a swarm of 25 agents in all trials presented in this work.
This is approximately the size of the largest swarms evaluated in (Delight et al., 2016). We decided
on a value of 0.003 for k, through experimental validation. This value was chosen such that
when executing dispersion, agents dispersed quickly until reaching an equilibrium at which point
agents were stable and movement ceased. We characterize swarm behavior via the use of two
metrics: mean neighbor distance and mean swarm speed. The mean neighbor distance refers to the
average distance, across all pairs, between a robot and one of its detected neighbors. Mean swarm
speed averages the speed of all robots in a swarm. We decided on k;, by surveying these metrics
for robots initially randomly placed in a circle with a diameter of 20 units and an equilibrium
distance ¢ = 40. We ran trials for 15s. A good value of k,, is one in which the robots move away
from each other initially, then the distance remains constant and the speed reaches 0, as forces
on each robot are stabilized. The behavioral model is such that an equilibrium neighbor distance
is not necessarily equal to ¢: if a robot has more distant neighbors than close ones, attractive
forces may initially outweigh repulsive forces, increasing the density of the collectives until the
proximity of neighbors less than ¢ away outweighs forces created by neighbors more than o away.
We tested 5 values of k;r. The results of these trials can be an be found in Figure 3.3.
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FIGURE 3.3: We chose the largest value of k,, that reached a stable neighbor spacing.
That value was 0.003, in red in the diagrams above. With this value, the swarm
quickly reaches equilibrium, where the average swarm speed is 0. Trials ran for
t = 15s.

3.2 Design of Component Parts of Turing Learning

3.2.1 Architecture of Replica Model

We assume replicas have the same movement and sensing capabilities as ideal agents. A replica
fish can thus detect the relative positions of neighbors inside its sensing radius 7¢omm = 100. Fur-
ther, a replica agent i’s position and velocity is also given by the discrete time-processes defined
in Equations 3.1 and 3.2. That is, the replica’s velocity is assumed to be a summation across all
neighbors of a function operating on the relative position of a single neighbor.

The replica’s time evolution function f is not given by Equation 3.3. Instead, the time evolu-
tion function f,,pic, is modelled using a neural network (NN). We decided on a neural network
architecture of a multi-layer perceptron with 2 inputs, 3 hidden nodes, and 3 output nodes, a lo-
gistic sigmoid nonlinear activation function, and a bias for each hidden and output node. The

logistic sigmoid activation function has the range (0,1) and is defined as:

sig(x) = 7 —I—le—x (3.4)

The connection weights of this perceptron are optimized through the evolution process. The input
to this perceptron for an agent i given a neighbor j are 7j; = (7ijx, 7ij,): the relative x and y location
of neighbor j according to agent i. The inputs 7;;, and r;j, are normalized to lie in the range [0, 1] by
dividing raw sensor position data by 7comm = 100. The output of this perceptron is j’s contribution
to i’s current velocity, decomposed into x direction, y direction and speed components, such that
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Vijv * Vipar

FIGURE 3.4: (a) presents fi.piics;, @ multi-layer perception with 2 inputs, 3 hidden
nodes, 3 output nodes, and a bias for each layer. The perceptron maps neighbor j’s
relative position to a contribution to i’s velocity. In (b), we diagram the input and
output values of the perceptron in an imagined scenario.

Uij = (vijx, Vijy, Uijv). We constrain all outputs to the range (0, 1) through appropriate use of our
nonlinear activation function. We can then recombine the outputs to form a velocity vector such
that the fish’s speed must lie in the range (0, vy ). Formally, this recombination is as below and

is shown in Figure 3.4.

x = vjjx — 0.5

Yy = vijy —0.5
d= (x,y) (3.5)
Z_)‘i] = i—» * Ujjv * Vinax
1]

3.2.2 Architecture of Classifier

Our classifier needs to be capable of discriminating between genuine and counterfeit data samples,
those created by ideal agents and replica agents, respectively. Data samples are created by tracking
information about agents over the course of a simulation. These samples are time sequences. Each
step in the time sequence contains a number of measurements of some aspect of the system at that
time step.

The classifier is an Elman neural network, a particular type of recurrent neural network (RNN)
(Elman, 1990). In this network, the hidden layer is connected to a context layer which stores
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information from previous inputs, making this network well suited for our time sequence data.
The classifier examines data from a single time step simultaneously and can hold "memory" in
its context layer about past time steps. We thus feed in an entire data sample from a single trial
and then reset the context layer. The classifier has i inputs (the number of measurements taken
regarding a system at a single time step) and / hidden layers. We have varied both i and / in our
research as we formulate new data samples to be used as input to the classifier. In all cases, the
classifier has a single output neuron. We add a bias to every non-input neuron and use the same
logistic sigmoid nonlinear activation function for hidden and output neurons (function given in
Equation 3.4). A data sample from a trial of T time steps is a T x i matrix D. Each row of the
matrix contains data from one time step. The classifier considers each time step sequentially, and
the hidden layer is reset for each full data sample D.

We denote the output of a classifier ¢ after ¢ time steps of data sample D as O.(D;). The
sequence of outputs {Oc(Dy, ), ....O¢(Dt,) } from a data sample D is denoted O.(D) . We also define
the judgement of a classifier as the final decision of the classifier on a data sample being genuine or
formal. Formally, the judgement | of classifier c on a data sample D is given as follows:

(D) = 1 if OC(th) >=0.5 (3.6)

0 otherwise

A judgement of 1 means the classifier believes the data sample to be a genuine data sample from
an ideal agent or ideal swarm and a judgement of 0 means the classifier believes the data sample
to be a counterfeit data sample from a replica agent or replica swarm.

3.2.3 Computation of Fitness for Candidate Solutions in both Replicas and Classifiers

The quality of candidate replicas and candidate classifiers is determined by their relative per-
formance against the other population. This competitive manner of fitness calculation is termed
subjective fitness. The functions below are formulated according to a population of M replicas
and a population of N classifiers in evolution.

Replica Fitness

Intuitively, we wish to give higher fitness scores to replicas that successfully trick classifiers into
categorizing their counterfeit data samples as genuine data samples. Each replica creates K data
samples. In its most general formulation, the fitness of a replica is the mean over all data samples
and all classifiers of some function f,,,4.; of the outputs of a single classifier. We denote the kth data
sample generated by a replica m as D,,. The fitness r,;, of replica m can thus be given generally as
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follows:

K
Z model 6 mk)) (37)

||Mz

In this work, we consider only the final judgement of classifier when calculating replica fitness,
as opposed to the entire set of outputs. As a judgement of 1 indicates the classifier believes a data
sample to be genuine, we can simply average the judgement of all classifiers on all samples created
by a replica model to calculate its quality, 7,

1 N K
c=1k=1

Scoring classifiers is slightly more complex. We wish classifiers to correctly mark genuine
data samples as genuine, and counterfeit data samples as counterfeit. We thus separately score
a classifier on its ability to recognize genuine samples and on its ability to recognize counterfeit
samples, and combine these scores via a scoring function g. We have L total genuine data samples,
and denote the /th genuine data sample as D;. To calculate the counterfeit score and to calculate
the genuine score, we average a scoring function of the output of a classifier over all counterfeit
or genuine data samples. Formally, we define the fitness r. of classifier c:

M K
counterfeit, —M— Z Z feounterfeit (Oc(Dik) (3.9)
genuine, =7 ngenuine(éc(Dl)) (3.10)
=1
1. =g(counterfeit,, genuine,) (3.11)

We evaluated multiple possibilities for feounterfeit, fgenuine and g. The evaluation of these functions
can be found in 4.3 .4.

3.2.4 Algorithm for Optimization of Replica and Classifier Parameters

We use the covariance matrix adaption evolution strategy (CMA-ES) algorithm to optimize our
replicas and classifiers (Hansen, Miiller, and Koumoutsakos, 2003). This algorithm assumes a
dependent relation between values optimized by the algorithm and attempts to learn this rela-
tionship to more quickly optimize the learned values. Evolutionary algorithms such as CMA-ES
determine the manner in which the fitnesses of a population of candidate solutions inform the
population in the next generation. Our optimization processes for classifiers and replicas are run
independently. A set of candidate replicas is generated by one evolutionary process. A set of
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candidate classifiers generated by a second process. However, as the fitness of each candidate
solution is determined by the fitness functions given previously, this subjective fitness implicitly
links the two processes.

This work uses an existing Python implementation of CMA-ES (Hansen, Akimoto, and Baudis,
2019). This implementation allows the user to request the current set of candidate solutions, and
then provide the fitness of each candidate solution. A candidate solution from CMA-ES is a list
of numbers which we translate into weights for our replica neural network or classifier recurrent
neural network. This implementation assumes the use of an objective function, rather than a
fitness function: objective functions are generally minimized, while fitness functions are generally
maximized. To utilize CMA-ES to maximize candidate solution fitness, we simply provide to the
optimizer the negation of the fitness of a candidate solution, ie —r. or —r,,. CMA-ES internally
determines parameters specific to the optimization process. Users are only asked to supply A, the
size of the population of candidate solutions in each generation, X, the initial mean of each value
in the set of values comprising a candidate solution, and oy, the initial variance of these values.
We varied each of these values during the course of our work. Each experimental trial specifies
the evolution parameters used in that trial.

It is useful to note here that the co-evolutionary strategy inherent in Turing Learning has led
to symmetrical optimization. Attempting to minimize the fitness of models and classifiers also
drives competition. However, if we attempt to minimize the fitness instead of the negation of
the fitness, we implicitly switch the meaning of classification values. When minimizing fitness,
J(D) = 1 would imply recognizing a counterfeit data sample, the opposite meaning of that which
we define.

3.3 Simulation Platform

We use the BlueSim platform, a simulator designed explicitly to work with the robotic platform
to which we plan to transfer learned behavior (Berlinger and Lekschas, 2018). It models commu-
nication, neighbor sensing, environmental influence, and motion of robotic fish in 2 dimensions.
Robots are modelled as points in space with maximum speed and sensing distance. Robot’s ori-
entations are not tracked nor is turning speed considered in this simulator. Robots can thus be
considered as having a constant orientation and the ability to move in all directions. The robots
move in an unbounded arena. There is no noise added to sensor values or robot movement. The
robot’s control cycle is updated every 1 s, and locations of all robots are tracked every update
cycle. The simulator uses a multi-threaded approach, with each fish operating on its own thread.

This aspect of the simulator significantly increases the computational power required by a single
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FIGURE 3.5: (A) shows a simulation of dispersion using 25 ideal fish, while (B) shows
a simulation with 24 ideal fish and 1 untrained replica. We also compare the mean
neighbor distance (C) and mean swarm speed (D) of schools with and without a
replica. The school containing a replica executes qualitatively different behavior
than the ideal-only school and has a notably different mean swarm speed at the

conclusion of the simulation.

simulation, limiting the number of possible concurrent simulations a given computer can handle.

3.3.1 Data Collection: Homogeneous Swarms

We adapted the simulator in (Berlinger and Lekschas, 2018) to allow for the interaction of non-

homogeneous agents. Li, Gauci, and Grofs (2016) primarily simulated and collected data samples

from agents in mixed swarms of ideal and replica agents. However, initial testing revealed that

the behavior of ideal agents was significantly influenced by the inclusion of a replica as is shown

in Figure 3.5. We thus chose to run simulations in which the school being simulated consisted

entirely of ideal agents or entirely of copies of a single replica.

Running simulations comprised of a single replica also allowed for the generation of swarm-

based data samples. Previous work in Turing Learning had had each agent in a swarm generate
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an independent data sample consisting of its linear and angular speeds over the course of a sim-
ulation (Li, Gauci, and Grofs, 2016). Classifiers had to determine the origin of this data sample
without evaluating data samples created by other agents. Often in swarm robotics, however, it is
important to be aware of swarm level characteristics. When all agents in a swarm execute the same
behavioral model, it is reasonable to attribute some macro-level swarm behavior to that model.
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4 Results and Discussion

In this chapter we present and discuss our results. The chapter is organized as follows:

Section 4.1 naively applies the previous implementation of Turing Learning to fish schooling.
This implementation fails to infer dispersion, but the behavior that is learned reveals a limita-
tion of Turing Learning as previously implemented: it cannot infer spatial relationships between
agents. This finding motivates subsequent sections in which we decompose Turing Learning into
an analysis of replicas and an analysis of classifiers. These components are the most important
pieces of Turing Learning. If the architecture of either is insufficiently expressive to achieve its
designated task, Turing Learning will fail.

Section 4.2 analyzes the architecture of replicas outside of the context of Turing Learning. Ex-
amining replica architecture independently ensures that the replica, and not another component
of Turing Learning, leads to a given set of results. We use traditional evolution with objective fit-
ness functions and deep learning with backprogation to assess the ability of the replica to achieve
dispersion. The results from this section motivate the formulation of three new data samples to be
used in Turing Learning. These data samples are defined at the conclusion of the section (4.2.4).

We continue in Section 4.3 with an analysis of classifiers. Classifiers must be able to distin-
guish between genuine and counterfeit data samples. To independently evaluate classifiers, we
task classifiers with distinguishing between aggregation and dispersion data samples from the
ideal system. In this section, we evaluate the infrastructure around the classifier in addition to the
architecture of the classifier itself, examining how the choice of data sample, choice of evolution
parameters, and classifier fitness function impact evolution of high-quality classifiers on the dis-
persion vs. aggregation task. We validate the data samples presented in the previous section, and
propose and validate alternative classifier fitness functions (4.3.4). The data samples and fitness
functions are novel modifications to the original implementation of Turing Learning.

We conclude the chapter in Section 4.4 by demonstrating preliminary successful results of a full
Turing Learning trial to infer dispersion. This trial uses one of our novel data samples and one
of our classifier fitness functions. Experiments validating component pieces of Turing Learning
comprised the majority of research work. At the conclusion of that work, there were little time left
to analyze the whole system. As a result, while these results are encouraging, the impacts of our
proposed modifications on the whole system have not been rigorously analyzed.
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4.1 Direct Application of Previous Implementation of Turing Learning

to Dispersion in Schools of Fish

The success of Turing Learning in (Li, Gauci, and Grofs, 2016) led us to expect that directly apply-
ing Turing Learning to dispersion behavior would be relatively straightforward. Turing Learning
had previously been used to infer aggregation, a behavior that on the surface appears similar
to dispersion. However, we discovered that the aggregation behavior of the ideal system in (Li,
Gauci, and Grofs, 2016) was actually significantly simpler than the dispersion behavior studied
here. We begin by laying out the details of a direct implementation of Turing Learning and pro-
vide an explanation for why this implementation fails to learn the desired behavior.

4.1.1 Definition of Data Sample and Fitness Computation

Following the original work on Turing Learning, we tracked the angular and linear speeds of an
agent at each time step of a simulation. We ran simulations for 15s and collected data beginning
at time ¢ = 2. Each agent thus created a 14 x 2 data sample D for a total of K = 25 data samples
generated by each replica. For a swarm size of 25 and a population of M models we thus had 25 *
M = 25M counterfeit data samples. We ran a single simulation of ideal agents, which generated
of total of L = 25 genuine data samples. This gave us a total of 25(M + 1) unique data samples
to be independently classified by the population of classifiers. Because each time step of the data
sample contains two measurements, the current linear and angular speed of an agent, classifiers
had i = 2 inputs and 1 output node. We used the same number of hidden nodes, h = 5, as in (Li,
Gauci, and Grof3, 2016), giving us a total of 46 parameters to optimize.

We fully define here the functions feenuine, feounterfeit and g used in this trial. feounterfeir and
fsenuine specify a score for the classifier on its ability to identify counterfeit and genuine data sam-
ples, respectively, while g describes how to combine these scores into a single overall score. In this
section, we simply averaged the two scores to determine the final quality of the classifier, .:

rc = g(genuine,, counterfeit,)
1 , . (4.1)
=5 (genuine, 4 counterfeit.)

Following again from (Li, Gauci, and Grof3, 2016), we used the specificity and sensitivity of
the classifier to calculate foenyine and feounterfeit, respectively. The specificity of a classifier refers to
the fraction of genuine data samples it correctly categorizes, while the sensitivity of the a classi-
tier refers to the fraction of counterfeit data samples it correctly categorizes. Formally, we define
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feenuine to be the specificity of classifier c as follows:

. 1 =
genuimne, = Z ngenuine(oc(Dl))
=1

= specificity, 4.2)
1 L

=~ ) J(D1)
L l; ‘

We define feounterfeir to be the sensitivity of the classifiers. The classifier receives a higher score
for a judgement of 0, which signifies correct classification of the data sample as counterfeit. For-
mally, this is defined as:

M K
counterfeitc —Mi Z chounterfezt O D )

= sensitivity, (4.3)
1 M K
= MK Z 2(1 — Je(Dmx))
m=1k=1

Evolution Parameters

The CMA-ES package used works best when 0y is chosen such that solutions lie within 30 of Xj.
As our parameters correspond to the weights of neural networks and recurrent neural networks,
we selected ¥y = 0 (all values were centered around 0) and oy = 1 for both the optimization of
classifiers and the optimization of replica models.

In preliminary trials, the system learned replica neural network weights that caused integer
overflow. We thus constrained parameters for both replicas and classifiers to (—10,10) using a
bounding method provided by the CMA-ES implementation. Documentation for this library im-
plies the boundary constraints are implemented by mapping unbounded learned weights evenly
throughout the designated range (Hansen, 2011).

Experimental Set Up

We worked with a population of M = 100 candidate replicas and N = 100 candidate classifiers.
We terminated evolution at 200 generations. This was chosen due to computation limits. 200
generations of evolution took approximately 24 hours even when using a 16 virtual CPU AWS
EC2 server and parallelizing the simulations required by each generation. We analyze the replica
model that had the highest fitness score in the 200th generation.
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FIGURE 4.1: Directly applying Turing Learning does not lead to the inference of
dispersion.

4.1.2 Analysis of Swarm-Level Learned Behavior from Direct Application

We found that although the replica system showed evidence of learning, it did not learn dis-
persion. Instead, in a school consisting of copies of the highest-quality replica evolved, all fish
move side-by-side towards the top of the screen. Figure 4.1 visualizes the behavior of a swarm of
replica fish with the highest subjective controller after 200 generations. We can see both visually
and through the neighbor distance and swarm speed metrics that the correct behavior was not
learned. In an ideal swarm, the fish reach an approximate mean neighbor distance of 35 and mean
swarm speed of 0 by the 5th time step. These fish have a slow growing neighbor distance and a
consistent average swarm speed of 9, which is the maximum agent speed. One fish (in orange)
appears to follow a notably different path than the other fish. The fish all are running the same
controller so we are not sure why this occurs.

The similarity of fish trajectories in the swarm in Figure 4.1 in fact explains a likely reason for
the failure of direct application. In this trial, a classifier is given the trajectory information of a
single fish in the form of a time series of linear and angular speeds. In dispersion, all fish have
similar straight line trajectories. However, these trajectories are directed symmetrically outward
from the center of the swarm. In contrast, the replica fish in Figure 4.1 execute straight line tra-
jectories side-by-side, and do not consider the spatial arrangement of their travels. We thus need
to expand the data passed to the classifier such that the classifier is granted some measure of the
spatial context of an agent in the swarm.
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We further found that the classifier population after 200 generations had a mean fitness score
of 0.72, while the replica models had a mean fitness score of only 0.18 (note all fitness scores will
be between 0 and 1, with 1 being the maximum possible fitness). This vast disparity suggests the
coevolutionary algorithm has decoupled: it is relatively too easy for the classifier to detect the
fish, and too hard for the fish to evolve behavior that can trick the classifier. We thus examine
the replica model and classifier model independently to determine their capability of evolving an
effective solution to the given task.

4.2 Decomposition of Component Pieces: Replica Model Analysis

We begin our system decomposition by examining replica model architecture. We wish to ensure
that the architecture is sufficiently complex to achieve the desired behavior. If the behavior can be
evolved using an objective fitness function, it follows that the replica model is sufficiently expres-
sive, and the problem instead lies in the expressivity of the classifiers, the data passed to classifiers,
or in the competition dynamics between the classifiers and the models. Further, we analyze these
objective fitness functions to motivate new formulations for data samples to pass to the classifiers.

4.2.1 Objective Approaches to Developing High-Quality Replicas

In this section, we attempt to independently evolve replicas capable of dispersion. This evolution
is much simpler than the co-evolution approach of Turing Learning. We need only a single opti-
mization process, a singe set of candidate solutions, and an objective fitness function. An objective
titness function calculates the quality of a replica independently, rather than in comparison with
a second population. This objective fitness function will measure how well a replica achieves a
pre-specified goal. In formulating this function, we can directly state the factors we believe to be
important to dispersion.

We found that Turing Learning implemented naively did not work because it did not consider
the spatial arrangement of fish in a school. Using a direct evolution approach allows to ensure the
objective fitness functions do consider the relation between agents in a swarm. This allows us to
investigate if the desired behavior can be evolved using our replica architecture when the spatial
organization of a swarm is considered.

In formulating these functions, we diverge from the terminology of fitness functions, and in-
stead discuss cost functions. Fitness is most intuitively understood when it is given on a bounded
and increasing scale. This is not a requirement, but simply an easy way to conceptualize it, with
low quality solutions having fitnesses near 0, and high-quality solutions having fitnesses near 1.

When directly evolving replicas, we find it easiest to specify a goal, and measure the distance of a



Chapter 4. Results and Discussion 34

replica from that goal. Replicas can be arbitrarily far from the goal and the highest quality replica
is the replica with the minimum distance from the goal. We thus term the distance from the goal
cost and the fitness functions here, intended to be minimized rather than maximized, cost functions.

We formulate four cost functions for the direct evolution of replicas.

Formulation of Cost Functions for Direct Replica Evolution

Our first two functions, foutcome and foutcome time, are naive optimizers of our internal metrics for
evaluating the quality of behavior inferred by Turing Learning. We have characterized our disper-
sion behavior in terms of the mean neighbor distance and mean swarm speed over the course of
a simulation, noting that a swarm of ideal agents quickly reaches and remains at an approximate
mean neighbor distance of 35 and mean swarm speed of 0. We thus formulate 2 cost functions
from these metrics. The first considers these values only at the end of a simulation. The second
considers the metrics over the entire course of a simulation. Consider a school consisting of copies
of a single replica m. Let d;(m) equal the mean neighbor distance of this school at time ¢ and v;(m)
equal the mean swarm speed of this school at time t. We thus formally define these functions as:

‘dtf(m) - 35‘ +fo<m)
2

f/

foutcome(m) = (4.4)

foutcome_time (m)

Our next cost function, figea moder, is inspired by the ideal behavioral model. We convert the
implementation of the ideal controller into a cost function. In this function, we define the cost
contributed by a single agent i at time f to be the norm of the velocity fish i would have had at
time ¢ if it were running the ideal controller. We average this cost across all fish in the swarm at
each time step, then average the final cost over all time steps. Formally, we calculate the cost of
replica model m to be:

7ii(t) = X;(t) — X;(t)

1 tf 1 25 . 2 Vl]t
St maier(m) = £ 352 3 | 2 sl = o)1 - o) | (46)
=1"jeOy; H
o =40

We finally validated our controller by replicating the fitness function from (Duarte et al., 2016),
treating it as a cost function f,;, 4ist- By evaluating a verified fitness function, we can validate our
assumption that the controller is expressive enough to learn the behavior using our chosen replica
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architecture (the multi-layer perceptron) and evolutionary optimizer (CMA-ES). This function as-
sesses the distance of a robot from its closest neighbor at every time step in a simulation. The
cost associated with a school of copies of replica fish m is the mean difference between this dis-
tance and a prespecified distance. We set that prespecified distance to 30: Our ideal model has an
mean neighbor distance of 35, suggesting the minimum distance is lower. Formally, this function

is given by:

min_dist; = nlin ||?Z]HSt] € (), 71']' =X; — J_C}
7‘,']‘

14158 (4.7)
Fonin_aise(m) = 3 5= ) [min_dist; — 30|
fi=14°i=0

Experimental Set Up: Objective Fitness Approach to Replica Design

We worked with a population of N = 200 candidate replica models. We again ran trials for 200
generations. We bounded the possible weights learned during evolution to the range (—10,10).
We analyze the replica with the lowest cost, and thus best objective fitness, at the conclusion of
learning. In each epoch, we ran a 15s simulation of a school of 25 fish for each candidate model.
The agents were randomly initialized within a circle of diameter 20.

We conducted only 1 evolutionary run for analysis: informal testing suggested very similar
outcomes across evolutionary runs. Further, we aim to create a method that can create mimics bet-
ter than current metrics can classify. As such, we rely heavily on qualitative comparisons between
visualizations of ideal and replica swarms. We also examine graphs of the mean swarm speed
and mean neighbor distance in simulations. While this comparison method proved more than
sufficient to compare the various implementations considered in this work, it meant we did not
have good metrics to compare models across evolutionary runs. This did not pose a major prob-
lem, however, as the final behavior of replicas evolved using each cost function was sufficiently
distinct to assume behavior resulted from the differing cost functions rather than randomness in
the evolutionary process.

Comparison of Cost Functions in Evolving High Quality Replicas

We found that the replicas evolved using each cost functions demonstrated notably different be-
havior. The outcome based metrics, perhaps unsurprisingly, did the best at generating controllers
such that at the final time step of a simulation, the mean neighbor speed and mean swarm speed
were similar to our desired behavior. A comparison of the mean neighbor distance and mean

swarm speed at the final step of the simulation of the highest quality replica in a generation over
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FIGURE 4.2: We graph the mean neighbor distance and mean swarm speed at the
final time step of a simulation of the highest quality replica of the generation across
generations. We find that the outcome based functions (in blue and yellow) do the
best at developing replicas that match our ideal system on these metrics.

all generations can be found in Figure 4.2 and demonstrates this phenomenon. However, f,i,, gist,
the function adapted from (Duarte et al., 2016) led to behavior that was visually most similar to
our goal behavior, despite being dissimilar on the mean neighbor and average swarm speed met-
rics. A simulation of the behavior run by the highest quality model from each experiment can be
found in Figure 4.3.

Interestingly we found that the use of foutcome, foutcome _time, ANA figear moder led to the inference
of behavior where the fish reached approximately the goal neighbor distance and, for foutcome and
foutcome_time, g0al swarm speed, but did so via notably asymmetrical behavior, with many fish on
top of each other. The difference in learned behavior is likely due to the difference in metrics
used. foutcomes foutcome timer AN fideal moder @ll use a mean-based metric for determining the cost
of a particular configuration of fish. Thus, neighbors extremely close could be offset by far away
neighbors. In comparison f,,;,,_4is+ uses a single spatially dependent metric that will enforce spread
between fish.

In addition to qualitative evaluation of the best replica model, we plotted the cost of behav-
ior executed by our ideal model against the cost of the behavior executed by the highest-quality
replica over a simulation. We can see the results from these trials in Figure 4.4. These results
demonstrate that although the use of objective cost functions generates interesting behavior that
is somewhat similar to the ideal behavior, even using these functions, we are unable to evolve
behavior as good as the ideal behavior. This may be a result of the chosen architecture of the
replica model controller. The limitation may also result from the evolutionary optimization algo-
rithm. However, the learned behavior was sufficiently similar to dispersion that we choose not to

modify the replica architecture.
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FIGURE 4.3: Simulations of behavior for highest quality model at conclusion of
learning. Functions used for determining model quality in each image were: (A)

foutcome (B) foutcome_time (C) fideal_model (D) fmin_dist

4.2.2 Training Replica Controllers with Traditional Machine Learning

To decouple the expressivity of the model from the evolutionary algorithm used, we attempted to

tit the neural network controller of the replica exactly to the ideal controller.
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FIGURE 4.4: We plot the cost against time step for (A) foutcome_timer (B) fideal model
and (C) fyin_gist- In each plot the cost of the highest quality replica model after 200
generations is in blue, and the cost of the ideal model in orange. The lower value of
the orange line means the ideal model is considered higher quality by all metrics.

Generating a Data Set for Training

The replica was implemented as an agent with the same capabilities as the ideal agent, and with
a similar controller. However, an ideal agent i used a hand coded function ﬁj(t) to determine
the impact of some neighbor j’s position at time ¢ on i’s velocity. In contrast, the replica model
used an artificial neural network to relate a neighbor’s position to its influence on velocity. This
neural network was a multi-layer perceptron with 2 inputs, 3 hidden nodes, and 3 outputs. Each
node in the hidden and output layer had a bias, and we used the logistic sigmoid function as our
activation function and to bound outputs to the range (0, 1). These outputs were then converted
to a fish velocity as specified in Equation 3.5.

We desired to train our neural network representing the replica model to fit the function ﬁj(t)
executed by the ideal model. To do this, we needed to generate data representing actual values
of the function. While this function works across all real numbers, to ensure a practical good
fit, we generated data representative of real input values seen by fish in dispersion. We ran 500
dispersion simulations with the ideal fish. We collected the inputs and corresponding value of
ﬁj(t) across all fish and all trials, generating a total of 3,891,098 observations. fij(t) considers only
7;;(t) in its computation, which is the relative position of fish j from the perspective of fish i. The
fish have a sensing radius of 100 so in training and executing the replica controller, we divided
all inputs 7;; by 100 so the data lay in the range (-1, 1). To train the replica controller, we needed
our training data output values to be equivalent to the outputs of the replica controller. We thus
needed to transform the velocity generated by ﬁj(t) to a vector of outputs, essentially the reverse
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of equation 3.5. Formally, we converted ]?Z-]-(t) to target values t1, t5, and t3 as follows:

ty = [|7]] *
max

Experimental Design: Training With Traditional Machine Learning

We used this data set to train the replica controller. We trained the network via stochastic gradi-
ent descent (a common machine learning algorithm to optimize neural network weights) on our
original network architecture (2 inputs, 3 hidden nodes, 3 output nodes, logistic sigmoid nonlin-
ear activation function, and a bias for all hidden and output nodes). We measured loss during
training via Mean Squared Error (MSE). MSE looks at each data sample, and takes the square of
the difference between the output predicted by the network using the current network weights,
and the actual outputs, then finds the mean of this value over all data. We trained the data for
100 epochs. Each epoch is one pass over the training data, such that all data samples have been
able to update the model weights. We also trained an alternative architecture for the replica model
containing 50 hidden nodes rather than the original 3. The number of hidden nodes is one factor
in the expressivity of a neural network. Increasing the number of nodes generally increases the
expressive power of the network.

Results of Training via Traditional Machine Learning

We report the Root Mean Squared Error (RMSE) of the trained model on a subset of the generated
data set reserved for testing that was not used in training the model. The test set was 10% of
the original data set. The RMSE is simply the root of the MSE, so lower values represent better
fitting models. We find that our model as is when trained on generated data had a RMSE of
0.293. The model with 50 hidden nodes actually performed worse, with an RMSE of 0.294. As
our target values were in the range (0, 1), a RSME of ~0.3 represents a significant error margin.
Further, simply improving the number of hidden nodes did not demonstrate an ability to increase
the expressivity of the model.

4.2.3 Implications for Turing Learning

Our replica model is unable to perfectly replicate the function executed in the ideal model. How-
ever, the behavior learned in the f,,i, 4 trial suggests our replica model architecture is sufficiently
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expressive for dispersion-like behavior. We do not require that the replica model operates in exactly
the same manner as the ideal model: in fact, a promise of Turing Learning is that it may be used to
develop similar behavior even when replicas have capabilities different than the ideal agents. Our
choice of replica model has created such a situation, as we cannot train the replica to exactly model
the ideal controller. However, when training the replicas via traditional evolution, and evaluating
behavior of candidate solutions via cost functions judging the quality of the swarm as a whole,
we are able to generate controllers that locally act differently than the ideal controllers but cause
reasonably similar swarm level behaviors. Although none of the learned behaviors execute dis-
persion as well as the ideal model according to the defined cost functions, they do demonstrate
a set of possible approximations such that learning one of these behaviors would be a successful

outcome for Turing Learning.

4.2.4 Formulation of Novel Data Samples to be Used in Turing Learning

Our use of direct evolution of replicas also motivates the formulation of data samples to pass to
the classifier such that learning behaviors similar to those above via Turing Learning is possible.
Our original data sample consisted of the linear and angular speeds of a single agent over the
course of a simulation. This was insufficient information to detect spatial relationships between
agents. All the cost functions we used consider in some manner the relationship between agents.

Turing Learning is intended to be a metric-free system inference architecture. We balanced
this intention with the realities of learning schooling behavior in our three proposed data sam-
ples: position, neighbor awareness, and metrics. The position and metrics data samples confer
global information by utilizing data inherent to a swarm rather than a single agent. The neighbor
awareness sample, like the original implementation, only considers agent-specific information, so
is a local data gathering metric, but it considers in that local information the context of a single

agent.

Position

In the spirit of the metric-free approach, we first consider a fully observational data sample. Rather
than passing the classifier the trajectory data of a single agent, we created a sequence of the posi-
tions of every member of the swarm. Our intuition is that this will allow the classifier to compute
any needed metric of similarity. As we always operate with 25 fish in a swarm, this leads to a
classifier with 50 inputs: the (x,y) position of each fish at a given time step. The classifier is run
over the time sequence of the simulation before being reset.

A concern here lay in the potential for overfitting. With position information, classifiers may
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use location-specific information to distinguish between counterfeit and genuine data samples,
but we would like our replicas and classifiers to be generalizable beyond the location in which
they are trained. However, we note that replica and ideal agents are randomly placed in an arena
using the same algorithm at the start of a trial, so the starting position does not provide distin-
guishable information. We also note that a generally applicable classifier is not the goal of Turing
Learning, but rather a nice side product. The true product is the replica, which cannot detect exact
locations. Thus, even if the classifier utilizes specific position information to distinguish data sam-
ples, replicas able to fool a classifier will have developed a location-independent function. Though
this function may lead to a particular configuration, it is reasonable to assume that configuration
is, to the replica controller, generalizable beyond the original arena.

To account for the large input size, we increased the number of hidden nodes in classifiers
operating on this data sample to 1 = 10. This leads to a total of 621 weights that need to be
optimized via the evolutionary process.

Metrics

We next partially depart from the metric free approach. We note that we used metrics that appear
superficially similar in our four cost functions. Further, each seemed like an intuitively reasonable
metric for achieving the desired behavior. We found, however, that the learned behaviors were
strikingly different. Thus, it may be that the downside of metrics is not inherently in their use,
but rather in the difficulty of having to select exactly the correct metric. We thus propose a data
sample containing a variety of computed swarm-level metrics. Turing Learning will hypothet-
ically learn which metrics convey useful information regarding a specific behavior and rely on
these metrics to distinguish between counterfeit and genuine data. The metrics we selected were
drawn from a 2016 review by Bayindir of swarm robotics tasks and their associated performance
metrics (Bayindir, 2016). The metrics are fully specified in Table 4.1.

These metrics are relevant to swarm robotics tasks beyond dispersion. As a result, we antici-
pate that this data sampling method will be generalizable to future applications of Turing Learning
within swarm robotics. Accounting for elements of vector metrics, we have a total of 14 elements
in our data sample. Thus, this sample leads to i = 14 input nodes in the classifier. We again
expand the number of hidden nodes to account for the larger input to # = 10 hidden nodes for a

total of 261 weights to be optimized during the evolutionary process.
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Metric Name Brief Description Formula Normalizer Number
] ] Fmds the minimum min, ; |5 (i) — % ()|
Min Inter-robot Distance distance between any ¢ 4. Mi4i 50 1
2 robots stji€M,j#i
. Finds the mean distance 1 <25 25 N
Mean Inter-robot Distance between any 2 robots 300 Ziz1 it 1% (1) — % (D) | 100 2
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Mean Robot COM Dist. the swarm center of ):1251 I2:() = COMt I 1000 4
mass (COM) B
Sums the square
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Norms the mean
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Mean Velocity* robots 25 Zl a0l 1 9,10
Displacement of the
COM Displacement* swarm center of mass COM; — COMy 60 10,11
from its start position
Measure of robots’
Mean Robot Displacement* displacement from their 25 Zl 1 X (i) = % (i) 75 13,14
starting position

TABLE 4.1: Metrics included in the hybrid metrics data sample. Those metrics with
a * are metrics that are vectors. Each element of the vector is considered an inde-
pendent item in the data sample. The normalizer is determined from the maximum
possible value of each metric. It is used to convert metrics to lie in the range (-10, 10).

Neighbor Awareness

Our final formulation of a data sample is a local sample inspired by the metrics used specifically
for dispersion behavior. This follows from the original approach in that the data sample is col-
lected at an individual agent level. However, failure in the initial approach resulted from a lack of
agent contextualization in data samples passed to the classifier. Intuitively, to infer an agent is ex-
ecuting dispersion we need to know something about its position relative to other agents. We thus
propose a data sample that includes this context. We term this data sample neighbor awareness.

We consider two radii, r1 and r,. For each agent i, let 11 () be the number of other agents inside
a circle of radius r; centered at i at time step ¢, and ny(t) be the number of other agents inside a
circle of radius r; centered at i at time step t. For appropriately sized r; and r,, we would anticipate
n1 and n; would decrease over the course of a simulation of dispersion. Our data sample consists
of a time series of 1 and 5.

Our data sample has only 2 inputs (1 (f) and 7,(t)) in each time step, so we have i = 2 input
nodes. This is the same size input as in the original implementation, so we hold the number of
hidden nodes constant at 1 = 5, for a total of 46 weights to be optimized. However, we also need
a method of determining r; and r,. We chose to have these values also learned. Work leading up
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to the development and naming of Turing Learning as a technique examined a co-evolutionary
paradigm of model and classifier in the inference of the behavior of a single agent (Li, Gauci, and
Grofs, 2013). In this work, the classifiers had the ability to "interrogate” the behavior of the agent
by outputting both a judgement on a data sample and a stimulus for interaction with the agent.
Our decision to have the radii learned follows from this idea that classifiers can "interrogate" the
agents they observe. We consider the radii to be a fixed property of a single classifier. Thus a
candidate solution for a classifier now includes both the weights of a recurrent neural network,
and 2 weights which are appropriately scaled to be r{ and r, then used to generate the data sample
fed to this classifier. The addition of these two values leads to a total of 48 weights learned for this
data sampling method through the evolutionary process.

4.3 Decomposition of Component Pieces: Classification Analysis

We continue our analysis of Turing Learning by investigating the properties of the classifiers. The
classifiers utilize and thus investigate the data samples defined in the preceding section. We also
investigate the impact of new formulations of feenuine, feounterfeit, and g (the function combining
foenuine and. feounter feir into a single score) on the classifier’s ability to distinguish data samples. To
test the classifiers” expressivity, we attempt to evolve classifiers able to distinguish between ideal
agents executing aggregation and ideal agents executing dispersion. This section is organized as
follows. We first lay out the classification task in 4.3.1. We then analyze failures that occur using
a naive fitness function in 4.3.2. This motivates modifying evolution parameters to increase initial
diversity of classifiers in 4.3.3. We also propose alternative fitness functions for classifiers in 4.3.4.
We conclude with the results of evolving classifiers using the various fitness functions and data
samples.

4.3.1 Classifier Task for Direct Analysis

We attempted to evolve classifiers capable of distinguishing between ideal fish executing aggrega-
tion and dispersion. In both behaviors, the equilibrium neighbor distance ¢ is set to 40. However,
in dispersion, the fish are initialized within a circle of diameter 20 and in aggregation they are
initialized in a circle of diameter 100, leading to a difference in observed behavior. A visualization
of each behavior can be found in Figure 4.5. All simulations were run for 15 s using swarms of 25

robots.
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(A) Dispersion (B) Aggregation

FIGURE 4.5: (A) Ideal fish models executing dispersion behavior. Swarm begins
(marked with triangles) randomly dispersed in a diameter of 20, fish have o = 40.
Final position is marked with a square. (B) Ideal fish models executing aggregation.
Starts with initial spread of 100, o = 40. Both behaviors were run for 15 seconds.

4.3.2 Preliminary Evolution of Classifiers on Novel Data Samples

We initially validated classifiers using a slight modification of the fitness function from prior work.
We directly evolve classifiers using data samples from 100 swarms executing aggregation and 100
swarms executing dispersion. The fitness of a classifier, r. was the total number of samples cor-
rectly categorized by classifier c. We used the same evolution parameters as in our initial imple-
mentation: ¥ = 0 and 0p = 1. We again bounded the parameters learned during evolution to
the range (—10, 10). We chose to consider initially the metrics and neighbor awareness data sam-
pling methods, as they require the optimization of fewer weights so were better suited for early
exploration.

Metrics Trial

Our first trial used 8 of the metrics in Table 4.1. We optimized a population population of 5000
candidate classifiers. The metrics data sampling method creates one data sample per swarm, for
a total of 200 data samples.

Neighbor Awareness Trial

Our second trial used the neighbor awareness data sampling method. In this trial, we had a
smaller population of candidate classifiers, 500. Classifiers using the neighbor awareness data
sample have a smaller number of input and hidden nodes than classifiers using the metrics data
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FIGURE 4.6: Early trials suggested the classifiers did not evolve well given the evolu-
tion parameters and fitness computation. (A) Metrics based classification (B) Neigh-
bor context based classification.

sample. As a result, evolving classifiers for use on this data sample requires optimizing only 48
parameters, much lower than the 261 parameters to be optimized in the metrics trial. We chose
the candidate solution population size in light of the number of parameters being optimized. In
using the neighbor awareness data sample, we need to convert learned values into radii. Learned
values are intended to be in the range (—30p, 30p), but we needed radii in the range (0, 300). We
thus converted the raw learned value to an appropriate radius value by utilizing the bounds on
parameters. Given a weight w;, we formulated r; via:

(wy + 10)

=g * 300 (4.9)

This data sampling method creates one data sample per agent. With 200 total swarms and 25
fish per swarm, this was a total of 5000 data samples.

Results

The resulting mean classifier scores for each trial can be found in Figure 4.6 and demonstrate a
dramatic lack of improvement over an evolutionary run. We hypothesized that r. calculated in
this manner did not provide a sufficiently informative gradient for reasonably fast learning. With
this fitness function, classifiers can do quite well (half of max fitness) by simply categorizing all
data samples as aggregation or all as dispersion. When exploring alternative solutions, classifiers
generally receive a lower score when they discover a solution that doesn’t simply guess in this
manner. It thus is unlikely that classifiers will consistently do better than a uniform random guess

if they begin with that guess. These results led us to ask why our classifiers always began with a
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FIGURE 4.7: We compare the values of metrics over a simulation for dispersion
(solid) and aggregation (dashed). Mean velocity, bounding box area, second mo-
ment, and mean inter-robot distance all begin with notably different values across
behavior type, though values converge across behaviors as the simulation contin-
ues.

single random guess. In addition, they motivated the formulation of a series of alternative fitness

functions for classifiers.

4.3.3 Diversity of Classifiers: Dependence on Evolution Parameters

An important question posed by the results from section 4.3.2 is why all classifiers initially make
only a single guess (all data samples classified as aggregation or all as dispersion). We thus set up
a series of trials aimed to examine classifiers from the first generation. We again examined only

metrics and neighbor awareness data samples.

Metrics

We created a data sample for aggregation and dispersion using the full suite of metrics expressed
in Table 4.1. We can see the values, as scaled for classifier input, of all metrics over the course
of an aggregation simulation and a dispersion simulation in Figure 4.7. We find that aggregation
and dispersion swarms generate clearly different data over a simulation. The metrics differ more
at the start of a simulation than at its conclusion, at which point the data from dispersion and
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aggregation converge. This comes from the design of the ideal behavior. Each fish is drawn to
agents outside the user given radius ¢ and repelled from agents inside ¢. In aggregation trials,
tish are distributed inside a circle of diameter much larger than ¢, while in dispersion, they are
distributed inside a circle of diameter smaller than ¢. However, ¢ is the same across both trials,
so the spread of fish at the final time step of a simulation should appear similar across behaviors.

The converging metrics reflect this.

Neighbor Awareness

The neighbor awareness data sample is created using aspects of a classifier. We thus are unable
to plot a representative data sample. However, the absolute lack of variance in classifier score in
Figure 4.6b suggests a problem with the data sample in addition to a problem with the classifier
titness calculation.

We hypothesize that the function from w to r is a limiting factor. Larger radii will not occur
until weights are pushed towards the boundary. However, radii need to be sized sufficiently well
that they can distinguish between aggregation and dispersion. Too small radii will never detect
neighbors, and too large radii will detect all neighbors, causing data samples for aggregation and
dispersion to be the same.

We thus move away from our linear function that depends on bounded values to a quadratic
equation that depends on the evolution 0p. CMA-ES works best when solutions are within 30y of
Xo. We thus define a function to map values learned via evolution within 30 of 0 to radii lying in

the range (0,225). The conversion is given as follows:

25

2
%w) (4.10)

r=(

Results

We determine the impact of varying our evolution parameters Xy and oy on the classifiers” abil-
ity to distinguish between dispersion and aggregation data samples. To do this, we consider the
output of a classifier over the course of a trial. We wish to select values of ¥ and oy such that clas-
sifiers generated by an evolutionary process using these parameters demonstrate sensitivity (give
distinct classifier output) to different types of data samples. Figure 4.8 contains the outputs of 5
randomly selected classifiers from the first generation of evolution on aggregation and dispersion
data samples for a variety of %) and ¢y. We find that 0p = 2 and ¥ = 0, and the squaring neighbor
awareness scaling method, give the most consistently diverse outputs. We have thus used these

parameters in all subsequent experimentation.
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FIGURE 4.8: This figure considers how the range of classifiers initialized depends on
evolution parameters. We plot the output of 5 randomly selected classifiers evaluat-
ing dispersion (solid) and aggregation (dashed, same color for same classifier) data
samples over a simulation. Trials varying o set Xy to 0. Trials varying X use oy = 2.
(B) and (C) also evaluate two methods of scaling radii from learned weights. In this
figure, Xy = 1 means X is a uniform vector of 1s.
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4.3.4 Alternative Functions to Compute the Fitness of Classifiers

We propose a series of fitness functions designed to provide more informative gradients for opti-
mizing classifier fitness. The first two, fjiyerse and fiin, are premised on the idea that guessing a
uniform classification is a poor strategy and should be given low fitness. Our final computation,
foutputs, considers more information from the classifiers than their final judgement in an effort to
extract more precisely the quality of a classifier. We term the original classifier fitness function that
averages specificity and sensitivity fsive-

In this section, we examine data samples from swarms executing dispersion and swarms exe-
cuting aggregation, rather than from replica and ideal swarms. For simplicity, in this section we
will equate genuine data samples with aggregation data samples, and counterfeit data samples
with dispersion data samples. Thus, the judgement of a classifier on a data sample D, J(D), being
1 represents aggregation and J(D) = 0 represents dispersion. We assume we have K data sam-
ples from dispersion trials and L data samples from aggregation trials. The /th aggregation data
sample is denoted D;. The kth dispersion data sample is denoted Dj.

Diverse Guesses

A close examination of classifier judgement revealed the existence in early generations of non
uniform guessing classifiers. However, these classifiers nearly always received scores lower than
classifiers executing uniform guesses, as the increased range of guesses led to more errors overall.
We thus decided to add a diversity component to the final score. This component gives a uniform
boost to classifiers that correctly identify at least one data sample in each category. Our genuine,
and counterfeit, scores remained unchanged from initial formulation. They calculate the propor-
tion of genuine and counterfeit data samples the classifier identifies. The complete formulation of

Jfaiversity calculate the fitness 7. of classifier ¢ is thus given as follows:

1 L
genuine, = aggregation, = — ) _ J.(D;)
1=1
1 K
counterfeit. = dispersion, = X Y (1= Je(Dy))
k=1
1 if genuine, > 0 and counterfeit, > 0 (4.11)

diversity, =
0 ow.

e = faiversity(c) = g(genuine , counterfeit,, diversity,)

1 . . N
= g(genumec + counterfeit. + diversity )
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Minimum: Do as well as worst classification group

While the above formulation overcomes the challenges we faced with diverse scores being con-
sidered lower quality, granting the "diversity" metric a third of the overall score was somewhat
arbitrary. We thus also consider a formulation which considers only the group the classifier scores
worst on. This formulation uses the same calculations for genuine and counterfeit as above, but
combines the score in a different way. We formally define the fitness . of classifier ¢ as calculated
by fminimum as follows:

¢ = fminimum () = min(genuine,, counterfeit.) (4.12)

Outputs: Consider classifier predictions Over time

Thus far, all classification fitness functions we have considered examine only the final judgement
of a classifier. However, the classifier produces an output for all time steps of a data sample.
Our final formulation uses this sequence of outputs to select for classifiers that offer more distinct
output values from the beginning of a time sequence on differing types of data. This additional
precision would reward classifiers for getting closer to correctly categorizing a data sample, and
so seems to overcome the problem we identified where more diverse guesses led to lower scores.
We use this formulation to calculate feenyine and feounter feit (Which equate to fageregation and faispersion
for this task) and then average these scores. However, it is also possible to combine the full output-
based subscores into a single final scores with either of the combination methods described above.
The notation O.(Dy;) refers to the output of a classifier c after t time steps on the /th aggregation
data sample. Using this notation, we formally define fo,;,uts below:

-
1=
~
N

S =
t=1
1 L tf
genuine, = = Y. ) 0:(Dy)
1=1t=1 (4.13)
1 K Y
counterfeite = — Y ) t*(1 — Oc(Dyt))

=
o

I

L
=

]

L

NI~ Wn

e = foutputs(€) = 5 (genuine, + counterfeit,)
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FIGURE 4.9: We find that there is no noticeable difference between fitness measures
in achieving high correctness in categorization. The neighbor awareness metric was
most successful, across all fitness functions, in creating a classifier able to distinguish
between dispersion and aggregation. (A), (B), and (C) plot the mean fitness score of
the population of classifiers over 200 generations. We also plot in (D), (E), and (F) the
corresponding mean over all classifiers of the proportion of data samples a classifier
correctly categorizes.

4.3.5 Experimental Setup: Comparing Classifier Fitness Functions

We evolved classifiers in all trials for 200 generations, with data samples from 100 swarms exe-
cuting aggregation and 100 swarms executing dispersion. The population size of classifier models
was dependent on the number of weights being optimized. The number of optimized weights was
dependent on the data sample chosen. For position, we had a population size of 5000. For metrics,
we had a population size of 2500. Finally, for neighbor awareness, we had a population size of
500. Each population was chosen to be approximately 101, with n being the number of optimized
values. Given our results in section 4.3.3, we set Xy = 0 and 0y = 2 for all trials. We choose not
to bound the parameters learned by evolution as the numerical overflow we encountered in early
trials resulted from replica controllers, not the classifiers. We ran one evolutionary run for each of

our three data sampling techniques using each fitness metric, for a total of 12 experiments.
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4.3.6 Experimental Results

The results of all twelve experiments can be found in Figure 4.9. We found that no combination of
fitness metric and data sampling method led to the evolution of a population of classifiers that, on
average, categorized more than 80% of data samples correctly by the 200th generation. There was
anotable difference between the performance of classifiers across data sampling methods. The po-
sition data sampling method demonstrated no performance improvement in terms of proportion
of samples correctly categorized. We did note slight increases in mean classifier fitness in trials
using faiversity and fuinimum, suggesting some, though minimal, learning occurred. The metrics
data sampling method did better: Depending on the fitness function, we found that by genera-
tion 200 the proportion of correct categorization ranged from 0.5 to 0.7. In addition, all fitness
scores demonstrate evidence of learning, as the mean score decreased over the generations. Of
the three data sampling methods, the neighbor awareness method performed best. It did equally
well for all fitness functions. By generation 200, the proportion of correct categorization across all
classifiers had reached nearly 80%.

The range in performance across data sampling methods mirrors the size of the classifier. The
position data sampling method had 621 weights to learn, whereas the neighbor awareness method
had only 48 values to learn. This variability suggests that the number of learned weights is an
important factor in the effectiveness of evolving classifiers via evolution, an unsurprising result.
In the context of Turing Learning, this suggests that minimizing the size of the classifier is an
important factor in developing a successful system. Here, the lack of learning using the position
method suggests that this method is unsuited to Turing Learning. All the metric and neighbor
awareness trials demonstrate learning, and may be suitable for Turing Learning.

We also compare the learning rates across fitness functions. We first note that the metrics and
neighbor awareness trials using f,,i»e demonstrated more improvement over 200 generations than
we had seen in preliminary trials. Modifying evolution parameters using results from 4.3.3 had
a clear and unexpectedly notable impact on the evolutionary process. We examine Figures 4.9b
and 4.9c to compare the impact of alternative fitness scoring methods on the dynamics of evolu-
tion. A common problem in evolutionary robotics is termed the bootstrap problem. This problem
occurs when all initial solutions in an evolutionary process are deemed equally poor, leading to
a lack of gradient along which evolution can occur. This is a problem we identified in 4.3.2 and
attempted to fix via modifying the starting conditions of evolution in 4.3.3. An alternative solu-
tion to the bootstrap problem is a fitness function that is more capable of distinguishing between
solutions. We found that in the metrics and neighbor awareness trials, using fuinimum O faiversity
to calculate fitness decreased apparent bootstrap problems. Both functions led to incremental im-
provement in the first 100 generations of learning, as evidenced by upward sloping fitness scores
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in Figures 4.9b and 4.9c.

The start of improvement in mean fitness score occurs at a later generation in trials using
the neighbor awareness data sampling than in trials using metrics data sampling for nearly all
fitness functions. This likely results from the need for evolution of both classifier parameters and
radii values in the neighbor awareness trials. The evolved radii need to create distinguishable data
samples before a classifier will be judged high quality, even if the classifier could discriminate
between aggregation and dispersion data samples generated using alternative radii. The later
steepness of learning seems to indicate that such radii have been found and classifiers are now
able to improve based on those data samples.

The relatively poor performance of fousputs in overcoming the bootstrap problem in the first
50 generations was a surprising result. As this fitness function considers all outputs of classifiers
over a simulation, rather than only the final judgement, we had hypothesized it would recognize
and reward incremental improvement and have the steepest initial learning curve. In addition,
data samples from simulations of ideal fish dispersing and aggregating are most distinct in early
time steps. The ideal fish behavioral model leads the fish to attract and/or repulse until reaching
equilibrium. Fish distance at equilibrium is constant across aggregation and dispersion simula-
tions. Thus, examining only the final data regarding a swarm may lead one to conclude that the
two swarms executed the same behavior, even though they arrived in similar formations from dif-
ferent initial positions. Unlike other fitness functions, fou:yu: directly considers classifier outputs
for each time step of a data sample. We predicted this would lead trials using foutput to perform
better than alternatives. However, in both the metrics and neighbor awareness trials, notable im-
provement in quality first appears at a later generations and is slower than in trials using other
fitness functions. We suggest the following explanation for this result. Consider the following
hypothetical scenario: One classifier examines an aggregation data sample and a dispersion data
sample, and outputs values from 0.8 to 0.9 for the aggregation data sample, and values from 0.6 to
0.7 for the dispersion data sample. A second classifier outputs values ranging from 0.5 to 0.6 for
aggregation, and 0.4 - 0.5 for dispersion. The first classifier is likely (depending on exact scores)
to be considered of higher quality than the second. However, the first classifier had guesses closer
to uniformly 1.0 than the second, which actually generates correct dispersion and aggregation
judgements. This functionality appears to cause initial bootstrapping problems.

Finally, although f,,iv. performed better in these trials than preliminary trials, it still caused
slower learning beginning at a later generation than all other fitness functions. This can be seen
both directly through the mean classifier scores (Figures 4.9b and 4.9c) and through the mean
proportion of correctly categorized data samples (Figures 4.9e and 4.9f). Thus, it is a poor choice
for determining classifier quality in Turing Learning.



Chapter 4. Results and Discussion 54

1.0 —— 1.0 e
VRS,

0.8 0.8
& )
5] 1<)
Q Q
2 06 // 2 06
2 — fdiversity 5 — fdiversity
£ £ g £
i) outputs ) outputs
Z 04 / =04 _-//
S 5
p= =

0.2 0.2

0.0 0.0

0 200 400 0 200 400
Generation Generation
(A) Metrics (B) Neighbor Awareness
1.0 1.0 .
000 W M

> 0.8 > 0.8
8 8
g 06 £ S 06 —_—
= = ldiversity 2 :«/‘/ diversity
N foutputs N foutputs
s 04 5 04
50 )
) )
$ S

0.2 0.2

0.0 0.0

0 200 400 0 200 400
Generation Generation
(C) Metrics (D) Neighbor Awareness

FIGURE 4.10: Classifiers trained with combinations of fyiversity and foutputs fitness
functions and metrics and neighbor awareness data samples are able to distinguish
between aggregation and dispersion data samples with high accuracy by generation
400. (A) and (B) plot mean classifier score against generation, while (C) and (D) plot
the mean proportion of data samples correctly categorized.

We note that learning had not reached a point of stagnation by generation 200. We thus ran
trials to 500 generations for fgiversity and foutputs using the metrics and neighbor awareness data
samples. The results can be found in 4.10. We found that by generation 400, all four trials demon-
strated extremely high classification accuracy. The neighbor awareness trial reached a point of
high accuracy at an earlier generation, reinforcing our belief that it is a simpler classifier to train.
There was no long term difference in the performance of fiversity and foutputs, suggesting that
though the bootstrap problem may be a significant factor initially for f,utputs, once overcome this
function is capable of evolving high-quality classifiers. The high classification accuracy in the final
generation demonstrates that the classifiers are sufficiently expressive for our purpose.
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4.4 Preliminary Recombination of Component Pieces

We ran two full Turing Learning trials informed by the investigation of component parts. In these
trials, we do not modify the replica or ideal components of Turing learning. We modify the data
samples generated by these systems, the fitness function used to determine the fitness of classi-
fiers, and the parameters used to initialize the evolutionary optimizer. A lack of time prevented a
rigorous analysis of the impact of varying each component piece on a full Turing Learning trial.
Nevertheless, we demonstrate the successful inference of dispersion via Turing Learning using

our modifications in preliminary trials.

441 Experiment Set Up: Complete Turing Learning Trial

We ran one trial using the metrics data sample and one using the neighbor awareness data sample.
We bounded the weights learned for the replica controller to the range (-10, 10), as we found that
even during direct evolution failure to bound these weights led to overflow in the network. When
independently trained, classifiers did not generally overflow with unbounded weights, so the
weights learned for classifiers were left unbounded. We set ¥y = 0 and 0y = 2 to initialize the
optimizers for both the replica models and the classifiers, based on the results from section 4.3.3.
We used foutputs to determine the quality of classifiers. We used the same function to judge the
quality of replicas as originally proposed. This fitness function calculates the proportion of a
replica’s data samples it tricks classifiers into categorizing as genuine. We ran each trial for 800
generations. The metrics trial took 3 days to run.

We found that the neighbor awareness trial crashed when parallelized to the same extent as
the metrics trial for reasons we have not yet determined. It repeatedly crashed a few hundred
generations into evolution even when fewer processes were run in parallel. We were not able to
determine the cause in the time available to us and thus were not able to complete the full trial.
Thus, though we attempted to run this trial, we do not have results to present. This error appears
to result from the learning infrastructure, rather than from the learning processes itself. We are
thus unable to draw conclusions regarding the use of the neighbor awareness data sample in a
full Turing Learning trial.

4.4.2 Results

We found that our trial using the metrics data sample successfully inferred dispersion behavior,
as can be seen in Figure 4.11. This behavior both qualitatively appears similar to the ideal system,

and has similar graphs of mean neighbor distance and mean swarm speed.
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FIGURE 4.11: We show a simulation of the ideal system (A) and a simulation of the
highest quality learned replica (B), running dispersion for 15s with a school of 25
fish. We also compare the mean neighbor distance (C) and mean swarm speed (d) of
the system. The replica visually appears to mimic the system quite well. Agents in
the replica system disperse slightly farther than than in the real system, but show a
similar propensity to reach equilibrium.

In addition to comparing the final learned behavior with the ideal behavior, we examine the
learning dynamics of the full trial. We examine the mean fitness of classifiers and replicas over
generations. As these fitnesses are subjective, reaching a particular fitness value may not be im-
portant. However, the change in fitness over generations can demonstrate when changes are oc-

curring. We find that by generation 500, the most significant changes in the classifier fitness cease,
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FIGURE 4.12: (A) We graph the learning dynamics of the metrics full trial. We see
that by approximately generation 500, learning has stabilized. Though models may
be somewhat decreasing in quality, the change is slight. (B) We graph the mean
neighbor distance and mean swarm speed at the final time step of a simulation of the
highest fitness replica swarm in each generation. Between 400 and 500 generations,
all best replicas have similar final mean swarm speeds and mean neighbor distances.
Further, a mean neighbor distance of ~ 40 and a mean swarm speed of ~ 1 is similar
to the final mean neighbor distance of ~ 35 and swarm speed of ~ 0 characteristic
of the ideal model.

though the model fitness is slightly decreasing. To measure the fitness of replicas via an objective
measure, we also plot the mean neighbor distance and mean swarm speed at the final time step
of a simulation of a swarm of the generation’s highest fitness replica. We find that these measures
stabilize by approximately generation 400. In addition, at this point, the values are similar to the
corresponding values produced by the ideal system. These results can be seen in Figure 4.12.
These results demonstrate that our proposed modifications, namely the use of the metrics data
sample and using foutputs to score classifiers, lead to the successful inference of dispersion. With-
out these modifications, such inference did not occur.
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5 Conclusion

5.1 Discussion

We have presented modifications to Turing Learning such that it may infer a replica that mimics
dispersion of artificial schools of fish. In doing so, we analyze the strengths and limitations of this
system. We found that simply transferring the exact implementation of Turing Learning from (Li,
Gauci, and Grof3, 2016) was unsuccessful. Turing Learning depends on the co-evolution of replica
models able to mimic ideal behavior and classifiers able to distinguish between data samples from
replica and ideal models. A crucial piece of this system is the formulation of the data samples
generated by the replica and ideal systems. Our initial data sample consisted of the trajectory
of a single agent in a swarm. Such a data sample led to the inference of a behavior that locally
appeared to mimic ideal behavior well, yet poorly mimicked global behavior. We found that
an alternative data sample, metrics, and classifier fitness function, foutputs, was required for the
successful inference of dispersion.

In analyzing our replica architecture, we found that it was sufficiently expressive to learn be-
havior similar to our ideal dispersion behavior, but not sufficiently expressive to exactly mimic
the ideal behavior. Indeed, when we directly evolved replicas independently of the full Turing
Learning system, we found that the ideal model performed better than the best learned replica
after 200 generations, at which point the evolutionary process had demonstrated a sustained pe-
riod of stagnation (lack of further improvement). Further, traditional back-propagation that fit the
controller of the replica fish to data generated by the ideal model demonstrated a poor fit to the
data. However, Turing Learning can be used to generate replicas that appear to mimic artificial
systems in which agents have substantially different capabilities. We thus chose not to modify this
architecture, and instead worked to realize this promise of Turing Learning.

Analysis of cost functions to directly evolve replicas out of the context of Turing Learning in-
formed our new formulations for data samples to be generated by ideal and replica swarms. We
defined three data samples: position, metrics, and neighbor awareness. All data sample formu-
lations were designed to provide to the classifier information that contextualized a single agent’s
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behavior, either by simply providing only swarm level behavior (as with metrics) or by provid-
ing information of agents in context with other agents (as with position and neighbor awareness).
We found that the classifiers proposed are sufficiently expressive to distinguish between schools
aggregating and schools dispersing when given the metrics or neighbor awareness data sample.
The position data sample was too large for the classifier to effectively make sense of it and utilize
it in decision making.

Further, we determined that evolution parameters should be considered carefully to ensure a
sufficiently diverse initial population of classifiers and replicas. We also found that the original
formulation of determining classifier quality led to a bootstrap problem. Initial candidate classi-
fiers were deemed equally poor and thus the optimization algorithm could not determine which
candidate solutions were closer to an ideal solution and optimize accordingly. We defined three
classifier fitness functions, faiversity, fminimum, and foutputs, that overcame this problem.

5.1.1 Limitations of Turing Learning applied to Fish Schooling

In applying Turing Learning to fish schooling, we discovered and began to address important
limitations in the original implementation of Turing Learning. We first discovered that the choice
of data sample generated by the artificial and replica systems is enormously consequential in the
quality and nature of inferred behavior. To infer behavior such that a swarm of replicas mimics a
swarm of ideal agents, it is likely that the data sample will need to place a single agent’s behavior
in the context of more global information. The data sample in previous work did not do this,
and instead contained only agent level movement information. However, in (Li, Gauci, and Grof,
2016), the swarm behavior inferred was executed by computation-free agents. These agents had
limited sensing capabilities and no memory. Their behavior was entirely reactionary, with their
velocity entirely determined by one of up to three discrete inputs. Thus, a classifier could observe
a trajectory and detect a replica if the replica displayed a velocity different from one of the three
displayed by ideal agents. The replica quickly learned to map the inputs to these three possible
velocities. That the inferred behavior matched the correct input to the correct velocity can be
explained by the fact that the ideal agents observed each possible input, and thus were at each
possible velocity, for a different proportion of the trial, a fact noted in (Li, Gauci, and Grof3, 2016)
to explain why some input-velocity pairings in replicas took more generations until they matched
those of the ideal agents. The computation-free nature of the behaviors studied in (Li, Gauci,
and Grofs, 2016) thus made the desired behaviors significantly easier to infer via Turing Learning
than other swarm behaviors. That aggregation and object clustering, the behaviors inferred in (Li,
Gauci, and Grof3, 2016), could be executed by computation-free agents were notable contributions
to swarm robotics literature (Gauci et al., 2014b; Gauci et al., 2014a). There is no reason to believe
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that many swarm behaviors will have this quality, nor that this is characteristic in natural multi-
agent systems such as schools of fish. Thus, it is important to develop a data sample that includes
more than independent agent information.

We found that our metrics and neighbor awareness data samples provided sufficient swarm-
level information for classifiers to distinguish between aggregation and dispersion. Fish aggregat-
ing and fish dispersing seem to have the same trajectory if observed out of context. The distinc-
tion between behaviors lies in the relations between individual agents. Dispersing fish move away
from each other, and aggregating fish towards each other, even if they both move in approximately
straight lines. We verified that these data samples reveal differences in swarm behavior even when
the difference in behavior is characterized by interactions between agents, as in aggregation and
dispersion. Although the neighbor awareness data sample was specifically formulated to provide
information relevant to dispersion and aggregation, the metrics data sample was created by com-
piling metrics used to evaluate a variety of quintessential swarm robotics tasks. We thus believe
this data sample could be used with Turing Learning to infer a wide range of behaviors.

We further found that determining the quality of classifiers based only on their proportion
of correct guesses tends to lead to uniform judgements by classifiers. They categorized all data
samples as 1 or all as 0. This causes a bootstrapping problem. All classifiers are initially given
the same score and in future generations classifiers that do not guess uniformly often have fewer
total correct guesses, leading many generations to pass before any classifiers emerge that do better
than a uniform guess. Turing Learning is actually partially designed to overcome bootstrapping
problems. In initial generations replicas are extremely poor mimics of ideal agents. Because of
this, replicas initially create counterfeit data samples significantly distinct from genuine data sam-
ples, making it easier for classifiers to distinguish between samples until replicas improve. That
being said, we found alternative classifier fitness functions that led to faster and more rapid im-
provement of classifiers, and thus advise using one of these alternatives. In a preliminary full test
of Turing Learning, we demonstrated that fo,:puts could be used successfully to evolve dispersion
behavior.

Finally, we found that the choice of model for replica agents is more significant than previous
work may suggest. Our architecture for the replica was a grey box model informed by the archi-
tecture of the ideal model. Each ideal fish i determined its velocity at time step ¢ by summing
the independent influence of each neighbor j’s position at time t on i’s velocity. The replica fish
followed this same model. However, the influence of j’s position at time ¢ on i was modeled via a
neural network instead of an explicit function. The neural network architecture was chosen after
the successful inference of behavior with a similar replica controller architecture in (Li, Gauci, and
Grof3, 2016). However, we found that while this architecture was sufficiently expressive to learn
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dispersion-like behavior, directly attempting to train or evolve the ideal behavior failed. Further,
simply increasing the number of hidden nodes in the neural network of replicas did not improve
their ability to match the ideal controller. Turing Learning claims to be able to train behavior more
effectively than direct evolution, and so we chose not to modify the ideal architecture. In doing
so, we verified this claim, as we were able to evolve successful dispersion behavior where direct
evolution approaches failed. Nonetheless, this difference in apparent expressivity of the replica
may make it difficult to determine if future failures by Turing Learning result from a failure in the
learning process or from a failure to use a sufficiently expressive replica.

5.2 Future Work

This work identified a series of limitations in applying Turing Learning to inferring schooling
behavior. We proposed and validated methods that appeared to overcome these limitations in
preliminary trials. Future work includes further analysis of the modifications in full Turing Learn-
ing trials and validating the solutions on novel swarm behaviors.

Our research initially led us to believe that the proposed replica architecture was insufficiently
complex to execute perfect dispersion behavior. While this ultimately proved false, as we did
evolve successful dispersion replicas, future work should investigate the use of optimization al-
gorithms that can evolve more complex architectures in addition to optimizing network weights.
One such evolutionary algorithm is NEAT: NeuroEvolution of Augmenting Topologies. Embed-
ding NEAT into Turing Learning could be a general solution to the problem of insufficiently
expressive architectures. Such a problem will be particularly important when applying Turing
Learning to the inference of natural systems.

Although we found that the classifier architecture was expressive enough to distinguish be-
haviors, evolution of such successful architecture required many generations. To evaluate a can-
didate solution required simulating a swarm, a non-trivial computation that we anticipate will be
common in applications of Turing Learning to swarm robotics. These simulations need to occur
each generation, and are extremely time-consuming, making each generation a lengthy and com-
putationally intensive process. An important practical consideration in future work will be to find
ways to minimize the number of generations required for evolution of good solutions. The re-
cent work by (Zonta et al., 2018) applying Turing Learning to the generation of human trajectories
in crowds found that alternative architectures for classifiers, such as LTSMs, a common deep-
learning architecture, performed better in terms of both learning speed and classification quality.
Evaluating these alternative architectures in Turing Learning for swarm robotics thus may aid
in decreasing the computation time required for a successful evolutionary run. Our successful
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evolutionary runs required 3+ days of computation even on servers with 16 CPUs. This signifi-
cantly limits the practicality of using Turing Learning in novel situations. Discovering failures and
proposing modifications is computationally expensive. Decreasing the computation time required
is critical to widespread adoption of Turing Learning.

We proposed a series of data samples and classifier fitness functions that led to successful
inference of dispersion. The generalizability of our modifications should be tested by applying
Turing Learning with these modifications on other swarm robotics tasks such as foraging. Thus
far, Turing Learning implementations have needed to be modified for the particular application,
and these modifications have been greatly informed by an understanding of the ideal system. An
implementation that effectively infers behavior across a variety of tasks is needed to reasonably

attempt to apply Turing Learning to the inference of behavior in a natural system.
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