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Abstract

Animals team up to collectively address challenges they could not overcome individually. Several
species self-organize into large groups to leverage vital behaviors such as foraging, construction, or
predator evasion. Ants, for instance, find shortest paths to food resources by depositing pheromones,
bees indicate direction and distance to flower meadows through waggle dances in the hive, and fish
display evasive maneuvers to escape predators. These three examples illustrate a collective problem-
solving ability that leverages the cognition and actions of individually limited organisms.

With the advancement of robotics and automation, engineered multi-agent systems have been in-
spired to achieve similarly high degrees of scalable, robust, and adaptable autonomy through decen-
tralized and dynamic coordination. Scientists have demonstrated ground-based collective transport,
construction, and self-assembly, in some cases with several hundred robots. Multiple aerial swarms fly
complex maneuvers, some of them even with little external assistance. Small robot teams, although
with limited autonomy, have been engaged to assist in search and rescuemissions at sea, sample oceanic
data, and find unknown deep-sea species.

Overall however, robot swarms have been most successfully demonstrated in two-dimensional
(2D) space or with partial assistance from central controllers and external tracking. In addition, many
more demonstrations of self-organized collectives exist above-ground as opposed to the less explored
underwater domain, which is particularly challenging because it often precludes traditional commu-
nication methods such as radio and GPS signals. Few underwater swarms exist and achieve limited
coordination complexity and scale because they rely on explicit message passing.

In this dissertation, I introduce a novel underwater robot collective, the Blueswarm, which realizes
full 3D spatiotemporal coordination without any external assistance. Each Bluebot is equipped with
four independently controllable fins and twowide-angle lens cameras for 3D locomotion and percep-
tion. The vision system is complemented by three LEDs, which encode information about direction,
distance and heading, and facilitate implicit coordination among robots. In the bioinspired design
process, I pursued simplicity in both hardware and software to enable real-time onboard multi-robot
tracking for local decision making followed by swift action. Blueswarm is the first 3D underwater
collective that uses only local implicit vision-based coordination to self-organize.

Inspired by the dynamic and agile coordination of fish, I show that complex and dynamic 3D col-
lective behaviors— synchrony, aggregation-dispersion, dynamic circle formation, search-capture, and
escape— can be achieved by sensingminimal, noisy impressions of neighbors without any centralized
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intervention. To the best of my knowledge, this is the first significant demonstration of unsupervised
and autonomous 3D collective coordination underwater.

Accompanied by a custom simulator, the Blueswarm platform gives researchers a much-needed
tool to systematically develop and test algorithms for self-organzied 3D collective behaviors in the lab-
oratory. The results of this dissertation provide insights into the power of implicit coordination and
advance the potential for future underwater robots that display collective capabilities on par with fish
schools for applications such as environmental monitoring and search in coral reefs and coastal envi-
ronments. In addition, the Bluebots are also well suited as an experimental testbed for investigating
natural collective behaviors and biomimicry, for example, studying the energy savings for different
formations in schooling fish or the performance landscape of aquatic propulsion with a diverse set of
caudal fins.

iv



Contents

1 Introduction 1
1.1 Motivation and Bioinspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions by a Novel 3D Robot Swarm . . . . . . . . . . . . . . . . . . . . 6
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 RelatedWork 11
2.1 Collective Robotics in Two- and Three-dimensional Space . . . . . . . . . . . . . 12
2.2 Underwater Collective Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Collective Behavior of Fish Schools . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 A Self-organized and Fish-inspired Robot Swarm 18
3.1 3D Visual Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 3DMulti-fin Locomotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Scaling up to a Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 A Realistic Three-dimensional Simulation Environment 43
4.1 Simulator Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Bluebot PerceptionModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Bluebot Dynamics Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Implicit Coordination for Three-dimensional Collective Behaviors 51
5.1 Self-organization across Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Self-organization across Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Dynamic Circle Formation andMilling . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Multi-behavior Collective Search . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Implicit CoordinationwithHeadings: Bioinspired Evasion 81
6.1 A Behavioral Model of the FountainManeuver . . . . . . . . . . . . . . . . . . 84
6.2 The FountainManeuver with Physical Robots . . . . . . . . . . . . . . . . . . . 86
6.3 Robustness and Scalability from Simulation . . . . . . . . . . . . . . . . . . . . 89

v



7 TowardOpenWater Swarming 96

8 Conclusion 97
8.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.3 The Importance of Understanding Collective Behaviors at Large . . . . . . . . . 102

Appendix A Main Supplement 104
A.1 Rapid LED Blob Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2 3D Tracking of Laboratory Blueswarm Experiments . . . . . . . . . . . . . . . . 108
A.3 Dynamic Circle Formation andMilling . . . . . . . . . . . . . . . . . . . . . . 116
A.4 Multi-behavior Collective Search . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendix B OnRobotics and Fish Swimming 132
B.1 Fish-like Swimming with a Biomimetic Robot . . . . . . . . . . . . . . . . . . . 134
B.2 Hydrodynamic Advantages of In-line Schooling . . . . . . . . . . . . . . . . . . 134

Appendix C On SmartMaterials for Soft Robots 136
C.1 Dielectric Elastomer Actuators for Autonomous Underwater Robots . . . . . . . 138
C.2 An Electrically-latched Compliant JumpingMechanism . . . . . . . . . . . . . . 139
C.3 Tunable Multi-modal Locomotion in Soft Dielectric Elastomer Robots . . . . . . 139

References 141

vi



List of figures

1.1 Blueswarm roaming a coral reef. . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Collectives in nature, research laboratories, and the real world. . . . . . . . . . . . 4
1.3 Preview of Blueswarm behaviors. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Selected above-ground robot collectives. . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Selected underwater robot collectives. . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Bluebot design, locomotion, perception, and decision-making. . . . . . . . . . . 20
3.2 Image processing and position inference. . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Position estimation accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Submerged vertical locomotion. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Submerged planar locomotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Submerged 3D locomotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Homing to a light source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Bluebot electronics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9 Tank setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Bluesim architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Bluebot’s perception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Bluebot’s dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Self-organization across time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Self-organization across space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Inter-robot distances during single aggregation-dispersion. . . . . . . . . . . . . . 61
5.4 Inter-robot distances during repeated aggregation-dispersion. . . . . . . . . . . . 62
5.5 Number of visible robots during controlled dispersion. . . . . . . . . . . . . . . 64
5.6 Target distance and number of robots during dispersion. . . . . . . . . . . . . . 66
5.7 Self-organized dynamic circle formation. . . . . . . . . . . . . . . . . . . . . . . 70
5.8 Dynamic circle formation geometries. . . . . . . . . . . . . . . . . . . . . . . . 74
5.9 Milling is a following behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.10 Search operation composed frommultiple behaviors. . . . . . . . . . . . . . . . 77

vii



6.1 Evasive maneuvers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Fountain maneuver finite-state machine. . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Fountain maneuver trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4 Blueswarm escapes the predator. . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5 Visible neighbors during alignment . . . . . . . . . . . . . . . . . . . . . . . . 89
6.6 Robustness of alignment with seven simulated robots. . . . . . . . . . . . . . . . 90
6.7 Perception quality affects alignment. . . . . . . . . . . . . . . . . . . . . . . . . 91
6.8 Scalability of alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.9 Escape angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1 Navigating unknown territory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.1 Correctness of rapid LED blob detection. . . . . . . . . . . . . . . . . . . . . . 106
A.2 Time complexity of rapid LED blob detection. . . . . . . . . . . . . . . . . . . 107
A.3 3D tracking— side view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.4 3D tracking— overhead view. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.5 Steady-state milling radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.6 Unique steady-state circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.7 A pathological initial circle configuration. . . . . . . . . . . . . . . . . . . . . . 123
A.8 Milling with field-of-view sensors. . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.1 Finbot: An autonomous and biomimetic experimental platform. . . . . . . . . . 133

C.1 Dielectric elastomer actuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

viii



List of publications

Parts of this dissertation are based on and reproduced from manuscripts which have been published.
The Science Magazine composed an excellent Blueswarm video that makes the concepts explained
here more tangible. A playlist with additional supplementary videos can be found on the YouTube
channel of the Self-organizing Systems Research Group.

Chapters 2, 3, 5

F. Berlinger, M. Gauci, R. Nagpal, Implicit coordination for 3D underwater collective behaviors in
a fish-inspired robot swarm. Sci Robot. 6, eabd8668 (2021).

Chapter 3

F. Berlinger, J. Dusek,M.Gauci, R.Nagpal, Robustmaneuverability of aminiature, low-cost under-
water robot using multiple fin actuation. IEEE Robotics and Automation Letters 3, 140-147 (2017).

K. Soltan, J. O’Brien, F. Berlinger, R. Nagpal, J. Dusek, Biomimetic actuation method for a minia-
ture, low-cost multi-jointed robotic fish. MTS/IEEE OCEANS Charleston, pp. 1-9 (2018).

Chapter 3, 4, 6

F. Berlinger, P. Wulkop, R. Nagpal, Radhika, Self-Organized Evasive Fountain Maneuvers with a
Bioinspired Underwater Robot Collective. IEEE International Conference on Robotics and Automa-
tion (ICRA), (2021).

Appendix B

F. Berlinger, M. Saadat, H. Haj-Hariri, G.V. Lauder, R. Nagpal, Fish-like three-dimensional
swimming with an autonomous, multi-fin, and biomimetic robot. Bioinspiration & Biomimetics,
16(2):026018 (2021).

ix

https://www.youtube.com/watch?v=qVsu49f-Vf0
https://www.youtube.com/playlist?list=PL5un2Fe_yAiYdaIzqtSwfymygPMVxKAmH


M. Saadat, F. Berlinger, A. Sheshmani, R. Nagpal, G.V. Lauder, H. Haj-Hariri, Hydrodynamic ad-
vantages of in-line schooling. Bioinspiration & Biomimetics, 16(4):046002 (2021).

Appendix C

F. Berlinger,M.Duduta,H.Gloria, D.Clarke, R.Nagpal, R.Wood, AModularDielectric Elastomer
Actuator to Drive Miniature Autonomous Underwater Vehicles. IEEE International Conference on
Robotics and Automation (ICRA), pp. 3429-3435 (2018).

M. Duduta, F.C.J. Berlinger, R. Nagpal, D.R. Clarke, R.J. Wood, F.Z. Temel, Electrically-latched
compliant jumping mechanism based on a dielectric elastomer actuator. SmartMaterials and Struc-
tures, 28(9), p.09LT01 (2019).

M. Duduta, F. Berlinger, R. Nagpal, D. Clarke, R. Wood, F.Z. Temel, Tunable Multi-Modal Loco-
motion in Soft Dielectric Elastomer Robots. IEEE Robotics and Automation Letters, (2020).

x



To K.

xi



Acknowledgments

It all started underwater. While diving in the pristine Galápagos Islands in 2014, I encountered fish
of all appearances. Moving fast and slow, striking out on their own or grouping up in innumerable
schools, they always blended in gracefully with the stunning underwater world. Back then, I had no
idea that I would learn so much more about the extravaganza I just witnessed.

I spent the last five years here atHarvardUniversity to study collective behaviors and fish swimming
with a swarmof underwater robots. I was surrounded by tremendous colleagues, who guidedmyway,
taught me their crafts, and brought countless smiles to my face.

Radhika (Prof. Radhika Nagpal), thank you for having beenmy advisor, for having helpedme fol-
lowmy interests and realizemy ideas, and for having showedmehow tobecome a successful researcher.
Thank you for having placed your trust in me.

Melvin (Dr. Melvin Gauci), building Blueswarm together with you was as awesome as all the mo-
ments we shared outside of the laboratory. You were so welcoming and I learnt in many ways from
you. Thank you.

Mishu (Dr. MihaiDuduta), you introducedme to the field ofmaterials science. Wehad great times
together building Fishu and what’s more, we became such good friends. I hold that very dear.

Mehdi (Dr. Mehdi Saadat), together with you I brought my robots to life, making them look and
swim like real fish. Thanks.

Rob and George (Prof. Robert Wood and Prof. George Lauder), you welcomed me to your labo-
ratories to collaborate and widen my horizon. Thanks for all your advice and mentoring.

Daniel Vogt, Fritz Lekschas, Moritz Graule, PaulaWulkop, David Clarke, Lily Xu, Zeynep Temel,
JeffDusek, HosseinHaj-Hariri, Lucas Guzman, JimMacArthur, and JamesWeaver, you were invalu-
able collaborators, experts, or classmates. Daniel Calovi, Nicole Carey,MelindaMalley, JustinWerfel,
NathanMelenbrink, Julia Ebert, HelenMcCreery, Jordan Kennedy, and Bahar Haghighat, you were
the labmates providing me with a stimulating and fun environment on a daily basis. Thank you all so
much!

It gives me special delight to thank my family. I love you all dearly. If I ever looked good, it was
because of you. Jessica gets extra credit for summarizing mywork in artistic form on the back cover of
this dissertation.

Lastly, I want to acknowledge the funding sources who in part enabled my research. The Wyss
Institute for Biologically Inspired Engineering, the Office of Naval Research, Amazon Web Services,
and the David B. Heller Innovation Fund contributed significantly toward research expenses and my

xii



stipend; the Swiss Study Foundation supportedme through their network of experts and complemen-
tary extracurricular activities including weekend seminars and summer schools.

My fascination for fish and their artistic choreography-like behaviors started underwater. A desire
to understand how they swim, interact, and organize arose. The rest is written in this dissertation.

xiii



1
Introduction

The natural world abounds with self-organizing collectives, where large numbers of relatively

simple agents use local interactions to produce impressive global behaviors, such that the system as a

whole is greater than the sum of its parts1. Ants, for instance, find shortest paths to food resources by

depositing pheromones on trails (a form of stigmergy)2; bees indicate direction and distance to flower

meadows through waggle dances in the hive3; and fish display evasive maneuvers to escape preda-

1



Figure 1.1: Blueswarm roaming a coral reef. The seven underwater robots coordinate their actions to explore an unknown
environment. (Credit: used under CC0; Bluebots inserted)

tors4,5. These three examples illustrate a collective problem-solving ability that leverages the cogni-

tion and actions of individually limited organisms. Self-organization is observed across scales, from

cells to insects, to birds, fish, and mammals1. What makes these systems so fascinating to scientists

and engineers alike, is that even though each individual has limited ability, as a collective they achieve

tremendous complexity.

1.1 Motivation and Bioinspiration

Picture the swarmof underwater robots fromFigure 1.1 investigating a coral reef, searching for people

in distress, or patrolling underwater infrastructure such as ports andoffshorewindparks. After having

been thrown into the water, the robots are on their own. They start out with controlled dispersion to

explore their surroundings, aggregate again and align their headings to migrate collectively to the next

waypoint, show elegant evasive behaviors to circumnavigate oncoming traffic, and complete their task
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in record time by exploiting parallel action. The data collected by the robot swarm allows scientists,

rescue forces, and infrastructure operators to monitor their sites and plan their actions.

While such scenarios are a rather far cry from the dynamic coordination underwater robots achieve

today, the underwater world is filled with organisms which display stunning group behaviors. Fish

schools are particularly impressive — collectives of thousands migrate long distances in the ocean,

efficiently search for resources, swim up rivers to reproduce, and even form dynamic shapes like flash

expansions or bait balls to evade predators and capture prey4–7 (Fig. 1.2 A). Even more inspiring are

the fish schools that move within coral reefs, coordinating in complex cluttered environments.

In general, biological collectives exhibit properties of autonomy that are highly desirable from an

engineering perspective: i) complex and coherent behavior over large physical scales, from individuals

whose perception is severely limited; ii) decentralized coordination and high levels of robustness to the

failure of individuals; iii) efficiency and adaptability by exploiting parallelism in actions and sensing.

Through self-organization, natural systems achieve a high degree of scalable, robust, and adaptable

autonomy1,6.

The researchfieldof collective robotics draws inspiration fromthesenatural systems and aims to en-

gineer their attractive properties intodenovo artificial systems8. Scientists havedemonstrated ground-

based collective transport8, construction9, and self-assembly10 (Fig. 1.2 B).Multiple aerial swarms fly

complex maneuvers (Fig. 1.2 C), some of them even with limited external assistance11–15. As impres-

sive are the several hundred thousand robots operating in Amazon warehouses (Fig. 1.2 D), the small

team consisting of the Perseverance rover and Ingenuity helicopter that is currently deployed onMars,

or the rapid progress on self-driving cars (Fig. 1.2 E).

Robots have also been engaged to assist in search and rescue missions at sea16, sample oceanic

data17–20, and find unknown deep sea species21. However, compared with above-ground collec-

tives, underwater robotic systems have not yet been able to achieve similar levels of self-organization.

Aquatic environments impose substantial challenges on perception and locomotion and especially
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Figure 1.2: Collectives — from nature to the real world. (A) A school of barracudas milling. (Source: iStock) (B) Shape
formation with 1, 000 Kilobots 10. (C) Intel’s Shooting Stars during the 2018Winter Olympics. (Credit: Intel Corporation)
(D) Robotic fulfillment in an Amazon warehouse. (Credit: Reuters/Noah Berger) (E) A self‐driving car interacting with other
road users. (Credit: ID 87117864 © Thelightwriter | Dreamstime.com) (F) The heterogeneous CoCoRo underwater robot
collective 23.

limit communication and sensing22; traditional above-ground communicationmethods such aswire-

less radio perform poorly underwater, and position localizationmethods such as the Global Position-

ing System (GPS) are unavailable. As a result, most underwater swarms coordinate only at the surface

or have no coordination whatsoever. Limited experimental studies of submerged collective behav-

ior were published23 (Fig. 1.2 F). A platform for the systematic study of collective behaviors in the

laboratory is missing.

In my dissertation, I designed Blueswarm, a swarm of miniature underwater robots, and demon-

stratedmultiple complex three-dimensional (3D) underwater collective behaviors. Inspired by school-
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ing fish, the Bluebots have four independently controllable fins and two wide-angle lens cameras for

3D locomotion and perception. The swarm uses mostly implicit vision-based coordination to self-

organize without any externalized assistance in position sensing or control. Such implicit coordina-

tion enables scalable and robust swarming because it not only is naturally decentralized and robust to

individual failures but also reduces communication complexity in environments where direct explicit

message passing is not possible or not desired. Blueswarm represents an important advance in the ex-

perimental investigation of underwater 3D self-organized collective behaviors. The Bluebots are also

well suited as an experimental testbed for investigating natural collective behaviors and biomimicry,

for example, studying dynamic evasivemaneuvers or energy savings for different formations in school-

ing fish.

1.2 Objectives

The overarching objective of this dissertation was to demonstrate three-dimensional and fully decen-

tralized collective behaviors with a novel robot swarm, Blueswarm. To pursue this objective, efforts in

hardware and software were necessary. The following list summarizes relevant design goals:

• A platform to investigate collective behaviors: I prioritized user-friendliness, ease of man-

ufacture, small size, and low cost in order to create a scalable multi-robot platform geared to-

ward the study of collective behaviors in the laboratory not only by myself, but also by other

researchers. I aimed to complement the physical robots by a simulator for the rapid develop-

ment and extended analysis of algorithms.

• A robot with 3D locomotion and perception: The majority of self-organized and au-

tonomous swarms is ground-based. To create robots capable of 3D collective behaviors, I fo-

cused on high degrees of maneuverability and comprehensive perception.
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• Unsupervised collective behaviors: Robotic systems are most adaptive, scalable, and robust

if they do not rely on external assistance during operation. In addition, above-ground assistive

technologies such as wireless communication to base stations or position localizationmethods

like GPS perform poorly or are unavailable underwater. My goal for Blueswarmwas complete

autonomy and full decentralization to realize unsupervised and unguided collective behaviors.

• Bioinspiration: Because fish swimming and schooling remain unparalleled when compared

to robotic systems, I aimed to identify and mimic helpful aspects of the aquatic locomotion

and group behavior seen in fish.

1.3 Contributions by a Novel 3DRobot Swarm

My work with Blueswarm makes three major contributions to the field of collective robotics: first, a

novel 3D robot swarm; second, a variety of collective behaviors demonstrated underwater; and third,

the thorough analysis with insights into the robustness and scalability of those behaviors. A preview

of contributions with Blueswarm is given in Figure 1.3.

1. Design of an underwater robot swarm with 3D sensing and motion

Blueswarm is the first 3Dunderwater collective that can self-organizewith local implicit vision-

based coordination only. For the systematic study of 3D coordination underwater, I designed

miniature, autonomous, fish-inspired underwater robots called Bluebots. Two individual-

level capabilities stand out: 3D awareness of neighbors and swift response to neighbors’ ac-

tions. I realize these capabilities using a suite of sensors and actuators that enables visual per-

ception and multi-fin locomotion along all three dimensions in space.

Bluebot’s streamlined body andmulti-fin propulsionwas inspired by fish such as the blue tang.

The pursuit of bioinspired design solutions inspired two collaborations on biomimicry of fish

swimming and schooling, and smart materials for soft robotics.
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Figure 1.3: PreviewofBlueswarmbehaviors. (A)The seven Bluebots designed for collective behaviors. (B) Synchronization
of LED flashes, represented by colored peaks that coincide over the course of an experiment. (C) 80‐fold changes in
occupied volume during aggregation and dispersion, illustrated as convex hulls. (D) Robot trajectories tracked from a
milling experiment. (E) Robots gathering around a red light source after a successful search operation. (F) Aligned robots
before predator evasion. (G) Colored robots milling without LEDs.
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2. Design of robust algorithms to demonstrate a variety of collective behaviors

I demonstratedmultiple complex 3D collective behaviors underwater, several of them inspired

by schooling fish. I showed that a variety of collective behaviors — coordinating time, space,

dynamics, and task sequencing — can be achieved using very simple modes of communica-

tion, and without any externalized assistance in sensing or control. This work highlights the

power of decentralized autonomy, providing experimental evidence and new theoretical re-

sults for 3D collectives. To the best ofmy knowledge, this is the first significant demonstration

of unsupervised 3D collective coordination underwater.

3. Simulation-based analysis into the robustness and scalability of collective behaviors

To extend the study with the physical robots, I developed a custom simulation environment

that is carefully tuned to replicate their dynamics and perception. This simulator enables in-

vestigations of collective behaviors along with statistical analysis across a variety of parameters

(e.g., larger test environments and robot swarms, or computationally faster robots) in virtual

robot experiments. Informed by simulation results, I provided several robustness and scalabil-

ity insights on flocking, intuition for circle formation, and a theoretical probabilistic analysis

of multi-color heading alignment. These results together with physical robot demonstrations

provide for the first time strong experimental evidence for multiple complex and robust 3D

underwater collective behaviors, achievable entirely through self-organized coordination.

The Blueswarm project was conceptualized together with my advisor Prof. Radhika Nagpal and

postdoctoral researcher Dr. Melvin Gauci. As the lead researcher of this project, I spearheaded the

overall design of the robots, algorithms, and experiments. Dr. MelvinGauci and I collaborated closely

and developedmany aspects of the software control system jointly. Dr. MelvinGauci led the develop-

ment of the custom electronics board and the circle formation and milling experiments. He further

wrote software to analyze individual robot trajectories from recorded video.
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Dr. Jeff Dusek joined the Blueswarm project during its early stages and made valuable contribu-

tions to the evaluation of sensing options and the chosen locomotive system as well as the design of a

laboratory testbed. In addition, he designed a multi-jointed robotic fish inspired by Bluebot together

with his student Katerina Soltan.

Paula Wulkop spent six months with me as visiting master’s student from ETH Zurich. She led

experimental work on self-organized evasive fountain maneuvers. Lucas Guzman, a Harvard Uni-

versity undergraduate, conducted a semester-long research project on collective mapping and visual

odometry with miniature underwater robots.

In addition tomy research on Blueswarm, I collaborated with Prof. George Lauder, Prof. Hossein

Haj-Hariri and Dr. Mehdi Saadat on fish swimming and schooling, as well as Dr. Mihai Duduta,

Prof. Robert Wood, Prof. David Clarke and Dr. Zeynep Temel on smart materials for soft robots.

1.4 Outline

The dissertation has eight chapters and three appendices:

Chapter 2 — Related Work: Discusses previous work in two- and three-dimensional collective

robotics with a focus on underwater robots, and also introduces findings on collective behavior of fish

schools.

Chapter 3 — A Self-organized and Fish-inspired Robot Swarm: Explains the fish-inspired de-

sign of the Bluebot underwater robots.

Chapter 4—ARealistic Three-dimensional Simulation Environment: Introduces the custom

simulation environment and models for Bluebot dynamics and perception.

Chapter 5 — Implicit Coordination for Three-dimensional Collective Behaviors: Presents

the design and experimental validation of algorithms for fundamental collective behaviors including

synchronization, dispersion, milling, and collective search.
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Chapter 6— Implicit Coordination with Headings: Bioinspired Evasion: Discusses heading-

based evasive fountain maneuvers.

Chapter 7—TowardOpenWater Swarming: Outlines a pathway to openwater swarmingbased

on colored robots and discusses experiments on dispersion, milling, and alignment without LEDs.

Chapter 8—Conclusion: Concludes and suggests future research, including on openwater nav-

igation, explicit communication, and design improvements.

Appendix A—Main Supplement: Contains additional technical information.

Appendix B — On Robotics and Fish Swimming: Contains a brief introduction and the ab-

stracts of two publications on fish swimming and schooling.

Appendix C — On Smart Materials for Soft Robots: Contains a brief introduction and the

abstracts of three publications on smart materials for soft robots.
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2
RelatedWork

The power of collectives becomes particularly apparent when they achieve high degrees of au-

tonomy, decentralization, and parallelism. While we can witness large-scale collective behaviors in

nature, it is often unclear how they arise from the many locally interacting agents. Mathematicians

and engineers have striven to understand themapping from local interactions to global behaviors and

vice versa in a quest to decode natural collective intelligence and engineer artificial collectives24–27.
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2.1 Collective Robotics in Two- and Three-dimensional Space

Recent advances have shown successful implementations of self-organized robot swarms as large

as 1, 000 units inspired by cells and social insects, albeit limited to two-dimensional local interac-

tions8–10,28–30. For example, the SWARM-BOTS project (Fig. 2.1 A) demonstrated ant-inspired

collective transport and chain formation8, the Kilobot project demonstrated large-scale shape self-

assembly10,29, and the particle robotics project (Fig. 2.1 B) demonstrated emergent complex mo-

tion28. In the three-dimensional aerial domain, large drone swarms have displayed complex maneu-

vers, though mainly relying on centralized base stations or external positional feedback, rather than

local self-organized interactions11–15,31,32. For instance, Intel’s Shooting Stars used at the 2018 Win-

terOlympics or theCrazyswarm (Fig. 2.1C) are centrally controlled by a single computer and depend

heavily on the Global Positioning System (GPS) and motion capture, respectively31,32. VIO-Swarm

(Fig. 2.1 D) copes without motion capture and GPS by use of Visual Inertial Odometry (VIO), but

requires a ground station for coordination since the twelve quadrotors cannot self-organize11. Other

aerial swarms cope without ground stations and are based on local self-organization, but require the

exchange of GPS locations among robots to infer relative positions12–14. Most recently, autonomous

exploration was demonstrated with up to six quadrocopters, which solely used gradient search to-

ward a signaling home beacon— a minimal form of external positional feedback— to come back to

the departure point (Fig. 2.1 E)15.

The only platform to achieve a fully decentralized and unsupervised behavior in 3D (search and

retrieval) to date is Swarmanoid (Fig. 2.1 F), a heterogeneous swarm composed of wheeled, climb-

ing, and flying robots33. Swarmanoid is a compelling implementation of practical swarm activities

for man-made real-world environments. Robots are devoted to particular tasks, including being a sta-

tionary beacon. The flying robots, capable of maneuvering in 3D, attach to the ceiling for increased

situational awareness, and temporarily fulfill the task of a semi-central navigation aid to other robots.
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Figure 2.1: Selected above‐ground robot collectives. (A) SWARM‐BOTS chain up to pull children across laboratory floors.
(B) Robot “particles” form clusters to move together. (C)Crazyswarmworks only with the assistance of motion capture. (D)
VIO‐Swarm relies on a centralized ground station. (E) Tiny swarm uses gradient search toward a signaling home beacon.
(F) Swarmanoid features three kinds of robots for autonomous collaboration.

While heterogeneity potentially enables more sophisticated behaviors through task specialization, it

comes at the cost of increased complexity, and the risk of compromised robustness if one robot type

malfunctions.

2.2 Underwater Collective Robotics

My work focused on a radically minimal design approach for robot collectives, suitable for the less

explored and particularly challenging underwater domain, where many above-ground sensing and

communication modalities are unavailable. This approach is geared toward the systematic experi-

mental study of fundamental algorithms for elementary 3D collective behaviors in the laboratory.

Blueswarm’s features along with selected related work are summarized in Table 2.1.

Several previous projects have also envisioned 3D underwater robot collectives for applications

from environmental monitoring in sites of high ecological sensitivity such as coral reefs, inspections

of underwater infrastructure, and search-and-rescue operations18,23,34–39. The National Aeronau-
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Table 2.1: Blueswarm’s distinctive features in comparison to other robot collectives. Blueswarm is the first 3D underwa‐
ter collective that uses only local implicit vision‐based coordination to self‐organize. Not depending on any assistance,
Blueswarm is more autonomous than most aerial swarms. It advances fundamental research on decentralized and self‐
organized robot collectives from 2D to 3D space.

tics and Space Administration (NASA) wishes to build swarms of autonomous micro-swimmers to

lead the search for life in liquid oceans on distant planets (Ethan Schaler, SWIM– Sensing with Inde-

pendent Micro-Swimmers). However, aquatic environments come with a unique set of challenges,

which make above-ground algorithmic approaches difficult to generalize22. There are inherent sen-

sory and communication deficits, and several modalities that are available for above-ground systems

(e.g., long-rangewireless radio andGPS), are not available underwater. These communication deficits

also make it more difficult to monitor systems in real time, or manually intervene for malfunctions,

thus requiring a higher degree of autonomy and robustness.

In the last couple of decades, theoretical studies have shown that simple implicit coordination rules

are sufficient to recreate the complex 3D behaviors observed naturally, in some cases producing algo-

rithmswith provable guarantees40. However, 3D implementations of such underwater robot swarms

still do not exist that can validate these algorithms. There are several engineering challenges in de-

signing underwater robots with 3D sensing and 3D motion. Furthermore, theoretical models make

14



many hidden and unattainable assumptions about perfect robot perception of neighbors that even

real fish cannot achieve. As a result, current implementations have been mostly limited to 2D co-

ordination at the water surface using traditional wireless communication and GPS localization, or

involved central underwater base stations18,23,36,41,42. For example, the commercially-developedData

Divers by Apium Swarm Robotics communicate and spread at the surface before diving for samples,

the M-AUE robots drift uncoordinatedly with the ambient flow to sample the ocean for offline data

reconstruction18, and larger autonomous underwater vehicles (AUVs) form a communication chain

to maintain connection with a floating base station17 (Fig. 2.2 A–C).

Some research groups have attempted more complex underwater coordination by designing new

explicit communication and localization methods (e.g., optical/acoustic modems36, centralized or

networked underwater base stations23,37, and bioinspired electroception43), demonstrating limited

coordination usually with two robots. A recent project, CoCoRo, built a heterogeneous swarm

combining multiple modes of mobility and communication: surface robots, underwater robots, and

floating base stations, using radio-frequency communication above-water and modulated blue-light

and acoustic communication underwater23. CoCoRo provided a compelling vision for heteroge-

nous collaboration as well as novel engineering design insights; however, limited experimental studies

of 3D submerged collective behavior were published35. In a follow up project, subCULTron, the

same lead researchers envision an artificial robot society to monitor the canals and lagoons of Venice

(Fig. 2.2 D)44.

Overall, the focus of underwater multi-robot systems has been on coordination through explicit

and semi-centralized communication, rather than the implicit and minimalistic visual coordination

that fish use. This approach has had limited success—compared to the incredible 3Dmaneuverability

of schooling fish, current artificial systems demonstrate a large gap in achievable collective complex-

ity. By contrast, implicit decentralized coordination can achieve scalability by spreading and reducing

computational complexity, and robustness by introducing redundancy and avoiding dependence on
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Figure 2.2: Selected underwater robot collectives. (A)Data Divers only coordinate at the surface before individually diving
for samples and, therefore, elegantly bypass inherent challenges of underwater communication. (B) The M‐AUE robots
do not coordinate while drifting with the ambient flow. (C) Mola, Opah, and Aku form a communication chain to explore
plankton populations in the deep chlorophyll maximum (DCM) layer. (D) The subCULTron project envisions a robotic
society including artificial mussles, lilypads, and fish.

a central control hierarchy.

2.3 Collective Behavior of Fish Schools

Nature provides an existence proof on how to deal with the challenges of underwater communica-

tion and sensing. In these exact same domains, massive fish schools achieve remarkably complex and

dynamic behaviors, by primarily relying on implicit coordination—many fish species base schooling
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decisions on visual observations of nearby neighbors, and several species use their lateral lines to per-

ceive neighbors in low-visibility conditions45–49. By making decisions based on local perception of

neighbors, these fish schools elegantly bypass the inherent challenges of underwater communication,

achieving enormous scalability and robustness through decentralization4,6,7,50–52.

A quarter of fish species school for their entire life, and about half the species school as juveniles5.

Schooling fish for which vision is their dominant sensory modality53 have excellent spherical 3D per-

ceptionwith a small blind spot at the posterior6. Specialized visual patterns, such as “schoolingmarks”

and prominent stripes, have evolved to facilitate the rapid detection of members within a school, and

bioluminescence is used by nighttime schooling fish, such as the Anomalops katoptron50,54. Among

the several advantages of schooling described by biologists are, for instance, the reduced risk of being

eaten4,55, higher success in foraging, or energy savings while swimming in groups56,57.

A wealth of experimental and theoretical work exists on flocking and alignment as it is observed

in fish schools24,58–61. Researchers have also conducted studies with live fish to investigate collec-

tive decision making62,63, group size choice dependent on ecological factors such as food availability

and predation risk64, or costs of swimming in isolation and various positions relative to other fish56.

Robot collectives could provide a synthetic means to further understand how fish school complexity

arises from the decisions of individual fish. However, to date, robotic examples cannot recreate the

many intricate behaviors fish schools display.
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3
A Self-organized and Fish-inspired Robot

Swarm

At the outset of this dissertation was the search for a robot design that can advance demon-

strations of self-organized collective behaviors from two- to three-dimensional space. To navigate a

3D underwater environment, such a robot has to show comprehensive situational awareness, com-

18



bined with a high degree of maneuverability in all directions. Furthermore, to enable autonomous

and real-time decision-making, the robot has to be capable of parsing information and extracting key

parameters rapidly onboard. At the same time, small size, ease of fabrication, and low cost are desir-

able to afford and deploy a collective of several robots in a laboratory testing environment, where data

acquisition for the analysis of collective behaviors is most straightforward, reliable, and efficient.

The functional design of the Bluebot underwater robot presented in this chapter was informed

by above criteria, and consists of three major modules: i) two cameras allow for 3D perception of sur-

roundings; ii) three LEDs serve as active beacons for neighbor recognition; and iii) four independently

controllable fins provide a high degree of maneuverability in 3D space.

3.1 3D Visual Sensing

To enable underwater coordination from onboard perception, we wanted to achieve the ability for a

Bluebot to detect fellow robots within a radius of at least 20 body lengths in all directions and infer

their direction, distance, and heading. Of all feasible sensing modalities given the robot target size

(10−20 cm), vision was the best option because small cell phone type cameras with wide-angle lenses

allow us to have high definition sensing arrays at low cost. In addition, cameras are passive sensors,

which do not cause signal interference, and allow for multi-robot detection in a single sample (i.e.,

image). Finally, fish often use vision as their dominant sensing modality for schooling, leading us

to the conclusion that underwater visual coordination can be effective for Bluebots in those same

domains.

3.1.1 Hardware Implementation

Bluebot achieves 3D vision and neighborhood sensing using a combination of cameras and blue-light

LEDs. Two cameras with 195 ◦ wide-angle lenses offer a quasi-omnidirectional field of view (FOV)
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Figure 3.1: Bluebot overview. Bluebot combines autonomous 3Dmulti‐fin locomotion with 3D visual perception. (A) Two
cameras cover a near‐omnidirectional field of view (FOV). One caudal and two pectoral fins enable nearly independent
forward and turning motions; a dorsal fin effects vertical diving for depth control. (B‐D) Seven Bluebots with streamlined,
fish‐inspired bodies are used in Blueswarm experiments. (Source of panel C: iStock) (E‐F) The fins are powered by a
custom electromagnetic actuator. (G) Information on neighboring robots extracted from images enables local decision
making. (H) Fast onboard image processing is achieved by setting the cameras such that only the LEDs (and potential
surface reflections) of neighboring robots appear in images. For illustration purposes, pairs of posterior LEDs belonging to
the same robot are color‐coded and have a white outline; a pair of the same color without the outline marks the respective
surface reflection. The third LED is omitted here. (J) Bluebots’ relative positions, headings, and distances are derived from
triplets of LEDs assigned to individual robots (color‐coded vectors), facilitating self‐organized behaviors such as visual
synchronization, potential‐based aggregation‐dispersion, dynamic circle formation, and collective search.
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with an emphasis on the critical anterior direction (35 ◦ overlap), and limited only by a narrow 5 ◦

blind spot at the posterior of the robot (Fig. 3.1 A). Schooling fish, too, have spherical 3D vision with

a small blind spot (~40 ◦) at the posterior6, and vision is their dominant sensory modality53. In order

to rapidly detect members of their school, many fish species have evolved specialized visual patterns

(e.g., “schooling marks” and prominent stripes), and nighttime schooling fish, such as the Anoma-

lops katoptron, exploit bioluminescence50,54. Inspired by these natural visual features, the Bluebots

incorporate three blue-light LEDs that allow neighbors to quickly identify direction, distance, and

heading of each other via projective geometry (Fig. 3.1 G–J). Direction is the easiest to infer based on

where a robot appears in the visual field. Distance and heading are more complex and require solv-

ing for scaling factors to compute the mapping from pixel to real world positions. The camera-LED

system is conceptually similar to a previous demonstration on aerial drones65, but requires only three

instead of five activemarkers and does not need to distinguish between fellow robots. The visibility of

the LEDs (~5m) exceeds the current testing environment in its longest dimension (~2.78m). Image

acquisition and processing is computationally expensive, limiting the sensing iteration frequency to

2Hz. However, since the Bluebotsmove at speeds close to one body length per second (BL/s), they are

able to achieve sensing-to-motion response times that are similar to schooling fish such as jack mack-

erels66. Using this vision system, Bluebot is able to approximate aspects of fish vision such as constant

awareness and swift response to surroundings. However, as with real fish51, the Bluebot vision system

has natural limitations, such as noisy observations when many neighbors are present, and occlusions

fromnearby neighbors, yielding incomplete and imperfect representations during dynamic swarming

activities.

The cameras (Raspberry PiCameraModule v2) penetrate the body on either lateral side and are an-

gled 10 ◦ forward against the y-axis. Customthermoformedhemispheresmadeof clear plastic (Curbell

Plastics PETG, 0.5mm in thickness) cover the lenses for waterproofing (Fig. 3.1 A). On the inside,

the camera cables are routed to a duplexer board (Arducam), which is then connected to the onboard
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computer (Raspberry Pi Zero W). One camera can be used at a time, and the duplexer board allows

for superfast switching (~20 μs).

Still images can be captured at resolutions of up to 1944 × 2592 pixels. In most cases, however,

the images are downscaled to a resolution of 192× 256 pixels to allow for faster image processing and

shorter control cycles. Captured images are in RGB color, but since the points of interest are Bluebot

LEDs, which are blue, only the blue channel gets used in image processing for collective behaviors.

The camera settings (brightness, contrast, white balance gains) are tuned such that under experimen-

tal lighting conditions, only the bright Bluebot LEDs register significantly in the images and appear

as quasi-circular blobs; everything else appears mostly black (Fig. 3.1 J). Vision-based algorithms for

neighbor detection that deal with the spherical distortion of the camera lens, LED reflections at the

water surface, and the assignment of LED triplets to individual robots are presented in the following

section.

3.1.2 Algorithmic Implementation

Bluebot’s underwater navigation is vision-based, and local decision-making for collective behaviors re-

lies on information onLED triplets that belong to individual robots. Upon taking an imagewith each

of the two cameras, a Bluebot executes the following steps to infer relative positions, distances, and

headings of other robots: i) identification of individual LEDblobs; ii) undistortion of LED centroids;

iii) inference of relative positions; iv) assignment of three LEDs per robot; v) inference of distances; vi)

inference of headings (Fig. 3.2). The extracted information on robots’ positions and headings enables

a suite of collective behaviors, which are discussed in the next chapter.
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Figure 3.2: Image processing and position inference. (A) Bluebot identifies individual LED blobs in themn image plane,
and uses a predetermined calibration function to undistort their centroids. Undistorted centroids are first projected onto
a camera‐based uvw unit sphere, and then aligned with the pqr coordinate frame attached to the robot’s center of mass.
The direction in which an object is observed is known from its normalized pqr coordinates. (B) The distance in scaled xyz
coordinates to such object can be found from two object points, whose real‐world distance is known, e.g., the vertical
posterior LEDs 1 and 2 of a Bluebot, which are δ = 86mm apart. (B,C) The heading φ of such object can be found from a
non‐aligned third object point at a known real‐world distance to the first two, e.g., the anterior LED 3 of a Bluebot, which
is in the same horizontal plane as and at a distance of δ = 86mm from LED 1.

Identification of Individual LED Blobs

LEDs appear as quasi-circular blobs in the images. These blobs are identified using a custom-designed

algorithm, which is described here briefly and in more detail in Appendix A.1. First, each image un-

dergoes thresholding to convert it to a binary image. Then, blob detection proceeds by searching for

continuity in white pixels in the verticalm and horizontal n directions (Fig. 3.2 A). Groups of white

pixels that are continuous in both directions become designated as blobs. In experiments with seven

robots and image resolutions of 192 × 256 pixels, this algorithm typically requires about 2.9 times

fewer computational steps compared to conventional algorithms (e.g., depth- or breadth-first search),

and runs an order of magnitude faster on the Bluebot’s Raspberry Pi Zero W computer. The sig-

nificant speedup comes at the cost of susceptibility to some pathological cases, where discontinuous

groups of white pixels get lumped together as one blob; however, these cases appear very rarely in

practice.
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Undistortion of LEDCentroids

The wide field of view provided by the lenses results in very significant spherical distortion in the

images. Thus, an undistortion function (obtainedwith the OCamCalib toolbox for MATLAB) is essential

to convertmn LED locations in images to uvw directions in the real world (Fig. 3.2 A). For Bluebot’s

particular camera and lens setup, a third order polynomial yields the best results. In order to retain

fast processing times, this polynomial function is used only on feature points of interest (e.g., LED

centroids).

Inference of Relative Positions

Given any one LED belonging to a Bluebot, that Bluebot’s relative position is known up to a scal-

ing factor from the normalized pqr coordinates of the LED. The pqr coordinates in the robot frame

are obtained after rotation and coordinate transformation of the camera-attached uvw coordinates

(Fig 3.2 A). For the right camera, a clockwise rotation of 10 ◦ around the vertically downward uR axis

precedes the following coordinate transformation:

p = −vR q = −wR r = uR

For the left camera, a counterclockwise rotation of 10 ◦ around the vertically downward uL axis

precedes the following coordinate transformation:

p = vL q = wL r = uL
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Assignment of Three LEDs per Robot

A typical image from a Bluebot’s camera contains several LEDs because multiple other Bluebots are

within the field of view. Moreover, reflections may appear if these Bluebots are close to the water

surface. For obtaining information about the number of Bluebots or their positions, it is necessary to

eliminate reflections and to identify triplets of LEDs originating from the same Bluebot. Reflections

are identifiable since they appear mirrored and vertically above a true triplet. The process of bundling

LEDs relies on the fact that Bluebots are passively stable in roll and pitch, and therefore their two

posterior LEDs are always vertically aligned, while the two dorsal LEDs are in the same horizontal

plane. These two heuristics allow us to find triplet candidates. For some experiments, we additionally

used aKalmanfilterwith a simple constant velocitymodel to predictwhere LEDs should appear based

on historical observations. The predicted LEDs get matched greedily with the heuristic candidates,

unless the two triplets are more than 300mm apart in the real world. The Kalman filter is effective in

achieving higher bundling accuracies and avoiding false positives.

Inference of Distances

Without loss of generality, the posterior dorsal and ventral LEDs are labelled 1 and 2, and the anterior

LED 3 (Fig. 3.2 B). When a pair of posterior LEDs 1 and 2 originating from the same Bluebot is

available, it is possible to estimate the distance to that Bluebot via projective geometry. The calculation

finds scaling factors α and β to go from the normalized pqr directions to the scaled xyz real-world

coordinates of both LEDs:

α(p1, q1, r1) = (x1, y1, z1)

β(p2, q2, r2) = (x2, y2, z2).
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It makes use of the known vertical real-world distance (δ = 86mm) between the LEDs:

z1 + δ = z2 ⇐⇒ αr1 + δ = βr2,

and the fact that both LEDs are equally far away in the x direction:

x1 = x2 ⇐⇒ αp1 = βp2.

Combining above equations yields the two scaling factors α and β, fromwhich real-world distances

are recovered (Eq. 3.1):

α =
δp2

p1r2 − p2r1

β = α
p1
p2

(3.1)

Inference of headings

Given all threeLEDsof a single Bluebot, the anterior LED3canbeused tofind its heading (Fig. 3.2B–

C). Analogous to distances, the calculation finds a scaling factor γ to go from the normalized pqr

directions to the scaled xyz real-world coordinates of the anterior LED 3 of that robot:

γ(p3, q3, r3) = (x3, y3, z3).
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It makes use of the fact that LED 3 is on a horizontal circle of radius δ around LED 1 (Eq. 3.2):

(γp3 − x1)2 + (γq3 − y1)2 = δ2

γ2 (p23 + q23)︸ ︷︷ ︸
a

+γ (−2p3x1 − 2q3y1)︸ ︷︷ ︸
b

+(x21 + y21 − δ2)︸ ︷︷ ︸
c

= 0

γ1,2 =
−b±

√
b2 − 4ac
2a

,

(3.2)

where the initial quadratic equation (first line) was rearranged in standard form (second line), and

the quadratic formula was used to solve it (third line). Now, the γ, for which |z1 − z3| is smaller, is

selected, since LEDs 1 and 3 are in the same horizontal plane. Given the xyz coordinates of LEDs 1

and 3, the relative heading φ of the neighboring robot follows from Figure 3.2 C (Eq. 3.3):

φ = atan2
(
y3 − y1
x3 − x1

)
(3.3)

3.1.3 Accuracy of Visual Detections

The estimation error for a single robot position depends on the angle more than on the distance, as

became apparent in a series of tests performed to evaluate the accuracy of the Bluebot’s vision system.

One Bluebot (A)was placed in a fixed position and programmed to infer the position of another Blue-

bot (B). Bluebot B was placed in various positions relative to A, namely in all possible combinations

of:

i) Distance: 0.5m, 1.0m, 1.5m, 2.0m, 2.5m, 3.0m

ii) Planar bearing: 0 ◦, 45 ◦, 90 ◦, 135 ◦

iii) Height: 0.0m, 0.5m, 1.0m

27



Figure 3.3: Position estimation accuracy. (A) xy planar error in Bluebot’s position estimation for 24 cases. Blue dots
represent the ground truth, red dots the estimated position. (B) z error as a percentage of distance. Colors represent
different angles. (C) Overall xyz error as a function of distance. Colors represent different angles.

This gives a total of 6 × 4 × 3 = 72 measurements. Here I only present the results for the case

where the height is 0.0m as the other heights gave similar results.

Figure 3.3 A shows the position estimation error along the x and y directions. Blue dots represent

the ground truth (i.e., the actual position of Bluebot B), while red dots represent Bluebot A’s estimate

of Bluebot B’s position. The error grows slightly with distance for all angles, but is within 20% even

at a distance of 3.0m.

Figure 3.3 B shows the error along the z direction as a percentage of the distance between the Blue-

bots. The z error depends on the angle, but levels off at a maximum of 15%.

Finally, Figure 3.3C shows the overall error as a percentage of distanced. Theoverall error is defined

as:

e = 100

√(
Δx
d

)2
+

(
Δy
d

)2
+

(
Δz
d

)2

The results show that the error for a single robot position depends on the angle more than it does

on the distance, and levels off at around 20% in the best-case scenario and 25% in the worst-case

scenario.

Overall, estimation of positions ismore accurate than headings. Small errors in LED locations have
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a minor effect on the relatively large magnitude of distance vectors. However, the same LED errors

can drastically affect the heading estimate, which is based on short inter-LED distances (Eq. 3.3). In

addition, selecting the correct solution for γ in Equation 3.2 becomes unreliable if two robots are close

to levelled; for robots that are exactly levelled, the heading remains ambiguous.

The accuracy of LED locations could be improved in two ways. First, images could be taken at

higher resolutions. This approach was tried and showed negligible benefits, while taking significantly

longer to compute. Second, every camera could be calibrated individually. However, thiswould add at

least 30minutes to the assembly process. Instead, the same calibration function is used for all cameras.

Generally, other sources of error and noise, such as reflections and occlusions, have a more severe

impact on robot detection.

3.1.4 Discussion of Alternative 3D Perception

Our visual sensing approach is geared towardminimalistic neighbor detection that runs onboard and

on the fly. Limited computational power forcedus to compromise between the amount aswell as com-

plexity of information we can process, and the time required to do so. For instance, LEDs of different

colors or more than three LEDs could have simplified their allocation to individual robots; however,

their extraction from raw images would have been more time consuming. In general, the three major

limitations of our current camera-LED system as discussed below are: first, LEDs are active beacons

whichmay not work in all lighting conditions; second, a vision-based approach to underwater coordi-

nationmay notwork in turbidwaters; third, the current system cannot detect obstacles or boundaries

in the environment.

1. The introduction of progressively more powerful and smaller microcomputers will enable

more sophisticated patterns and recognition to infer distance and heading of neighbors with-

outLEDs. For instance, deep learning-generated visual patterns (i.e., artificial schoolingmarks)
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may allow future Bluebots to recognize neighbor pose67. By contrast, we can already find the

direction of fellow robots without LEDs by simply coloring them differently than the sur-

rounding environment. This is shown in Chapter 7.

2. We evaluated several alternatives to vision-based coordination that would work in turbid wa-

ters. Bioinspired artificial lateral lines68,69 and electroception43 could theoretically provide

360 ◦ pressure and electrical maps of objects in the vicinity. However, their fabrication is in-

volved and off-the-shelf packages ready to use on small robots do not exist. Acoustic modems

are used for communication among larger autonomous underwater vehicles36 and sound nav-

igation and ranging (sonar) on manned ships and submarines. Aside from being bulky, their

concurrent use on multiple swarming robots would lead to signal interference.

3. Bluebots can currently only detect and coordinate with fellow robots. The perception of ob-

stacles or boundaries in the environment is still open and was outside the scope of this thesis.

While cameras arewell suited todeliver complex images,more computational power is required

to process them and extract meaningful information on environmental features.

Ultimately, we are still very far from fish— they can detect many aspects of their mates beyond just

distance and heading. Cichlids (Astatotilapia burtoni), for instance, use visual pattern recognition to

infer moods of conspecifics70. Fish also navigate a variety of underwater environments, using a suite

of sensing modalities to school with mates, evade predators, or find food.

3.2 3DMulti-fin Locomotion

A high degree of maneuverability allows Bluebots to capitalize on 3D visual information by exerting

3D locomotive responses. Our goalwas to achieve independent forwardmotion, turning in place, and

depth control at reasonable speeds (~1 BL/s). This required multiple actuators per robot in order to
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vector thrust forces in different directions. Therefore, actuators themselves had to be small, low cost,

and lowmaintenance. We were able to realize this highmaneuverability with a compact, fish-inspired

design that uses multiple fins powered by electromagnetic actuators.

3.2.1 Body and Actuator Design

The streamlined body of Bluebot, measuring 130mm(= 1 BL) in the longest dimension at a vol-

ume of 235 cm3, was modeled after typical surgeonfish from theAcanthuridae family (Fig. 3.1 B–C).

Surgeonfish are ubiquitous members of coral reef communities and capable of forming agile coordi-

nated groupings across a wide range of complex topographies71,72. To achieve high maneuverability

with Bluebot, four independently controlled fins provide precise locomotion in 3D space. Turning

in place, forward motion, and stopping in the horizontal xy-plane are achieved with two pectoral fins

(Fig. 3.1 D, left) and a caudal fin (Fig. 3.1 D, right), respectively, and diving along the vertical z-axis

is controlled with a single dorsal fin and slight positive buoyancy73. Bluebot is passively stable in roll

and pitch. Operating at fixed amplitudes, the actuation frequencies of the caudal and dorsal fin can be

modulated to reach cruise speeds of up to 150mm/s(= 1.15 BL/s) and dive speeds of up to 75mm/s.

The pectoral fins allow for near on-the-spot turning at radii as small as 65mm(= 0.5 BL), and 180 ◦

changes of direction can be achieved in less than five seconds.

All fins are powered by our custom electromagnetic actuators consisting of a coil inside which a

permanent magnet is hinged (Fig. 3.1 E)73,74. Oscillating the direction of an electric current flowing

through the coil induces an oscillating magnetic field, with which the magnet tries to stay aligned. As

a result, the fins oscillate around a single axis in a sinusoidal pitching motion (Fig. 3.1 F). The power

of the fins can be controlled by changing the voltage across the coil with pulse width modulation

(PWM). The actuators are submersible and only two wires from each coil penetrate the Bluebot’s

body, avoiding any need to seal off moving parts. The housings are 3D-printed in assembled state,

i.e., including the pivoted hinge to which fins, laser-cut from flexible plastic shims (ARTUS), are at-
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tached. The caudal and the dorsal actuators are equippedwith two coils each for enhanced thrust and

connect magnetically to the robot body. The magnetic connection allows for fast switching between

different fins, which was used in a collaboration on fish swimming and the propulsive efficiency of

fin designs (Appendix B). For the investigation of collective behaviors, the optimization of fin shape,

size, and material was not a priority. I chose fins in accordance with the robot geometry and actuator

strength. However, I used the collaboration on robotic fish swimming to investigate the performance

landscape of different fin types. The results allow to optimize the swimming performance andmimic

key characteristics of fish swimming such as U-shaped cost of transport and reverse Kármán wakes75.

3.2.2 Navigation Results

Wevalidatedourmulti-fin locomotion approach in an early robot designwith an inertialmeasurement

unit (IMU) and pressure sensor but no vision system73.

Depth Control with a Pressure Sensor

In two initial experiments on vertical motions, we investigated long-duration depthmaintenance (i.e.,

hovering), and long-range repeatable diving. In the first experiment, the robot hovered at a set depth

of 437mm. The results indicate that depth maintenance is possible within half of a body height

(Fig. 3.4 A). In the second experiment, the robot dove periodically between two thresholds set at

248mm and 748mm. The results demonstrate excellent accuracy and precision (Fig. 3.4 B). The

overshoots observed in this experiment can be explained by the robot’s inertia, and the time delay in-

troduced by smoothing the pressure sensor readings with an exponential moving average filter. Sum-

ming the time when the dorsal fin was active results in approximately 20% on-time for hovering and

60% on-time for diving, although both conserve identical net potential energies. The discrepancy is

mostly due to acceleration forces that build up while rising, and to a lesser extent due to increasing
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Figure 3.4: Submerged vertical locomotion. (A) Active maintenance of a prescribed target depth (red dashed line) is
achieved by using feedback from a pressure sensor and the dorsal fin to oppose positive buoyancy. (B) The robot can
also precisely control different target depths, in this case 248mm and 748mm. The red line denotes the robot depth
from visual tracking, and the blue circles denote depth found from pressure sensor measurements (samples shown every
2 s for clarity). The green line denotes the depth from visual tracking with a constant offset of 30mm (1/2 body height)
removed.

drag forces at higher rates of ascent or descent.

3D Swimmingwith an Inertial and Pressure Sensor

To evaluate planar trajectory control, we conducted a series of experiments including repeated square

trajectories at a given fixed depth (Fig. 3.5 A), and at incrementally decreasing depths (Fig. 3.5 B).

The three basic behaviors were open-loop forward swimming, gyroscope-based turning, and pressure-

based diving. A switch statement switched between forward, turning, and diving states whenever the

respective thresholds corresponding to distance, angle, and depth were reached. The sensor readings

were filtered with an exponential moving average filter (smoothing factor= 0.1).

We used visual tracking in 3D and readings from the pressure sensor (see Appendix A.2) to charac-

terize repeatability and drift over several repetitions of a prescribed trajectory. This allowed us to know

with high confidence where the robot was at all times in 3D space. The trajectories found using the

visual tracking system were partitioned into straight swimming, turning, and rising segments based

on the controller state (Fig. 3.5 C). The tracking videos were synchronized with the robot’s onboard
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Figure 3.5: Submerged planar locomotion. (A) A robot trajectory for five complete squares in the xy‐plane demonstrates
precise locomotion. (B) The 3D trajectory was obtained by combining visual tracking from the overhead camera with
pressure readings from the robot’s onboard sensor. (C) Trajectories were broken into straight (blue) and turn segments
(green) based on the recorded state of the robot (lower right). The turn angle is calculated using the vectors between
segment end points (red crosses).

data file using a sequence of LED flashes. By recording the LED and controller states throughout the

experiment, the location in world coordinates where the robot changed state could be identified. Us-

ing the 3D coordinates and time stamps recorded along each segment of the trajectory, the segment

lengths, swimming velocities, and turning angles could be calculated.

Complexities of moving in 3D space included coupled dynamics, such as the dorsal fin inducing

undesired turning as a side effect of diving, imperfect straight forwardmotion, and drifting gyroscope

readings. To mitigate the latter, an in situ drift model was obtained at the beginning of each experi-

ment while the robot was at rest. The observed static drift in yawwas fitted with a linear regression to

model its time-dependent progression, and then subtracted from the raw values. The final estimates

used for turning during the experiments translated linearly to degrees, allowing us to set thresholds

for any turning angle.
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Figure 3.6: Submerged 3D locomotion. (A) A robot trajectory for squares at incremental depths shows drift induced by
vertical motion. (B) The robot depth (orange line) is controlled with an onboard pressure sensor and set to remain within
target depth bands for each square. Depth band colors correspond to square colors above and right. (C) The 3D trajectory
validates prescribed 3D locomotion.

Swimming repeated squares at a fixed depth resulted in high consistency between trajectories

(Fig. 3.5). During the experiment the robot executed five complete squares, with 20 turns of nomi-

nally 90 ◦. All turns were between 96 ◦ and 82 ◦ with an average of 90 ◦ and a standard deviation of

4 ◦. The average turning radiuswas 110mm, or just over 1 BL. During the straight line segments of the

squares, the robot swam without control for a period of 7.5 seconds at an average speed of 53mm/s

(0.53 BL/s). The robot speed was consistent across the 21 straight segments with a standard devia-

tion of approximately 2mm/s (0.02 BL/s), resulting in an average segment length of 388mm(~4 BL)

with a standard deviation of 14mm (~0.1 BL). Because of the lowdeviation in turn angle and segment

length, the squareswere found to be largely repeatablewithminimal rotation or drift in the prescribed

shape.

Swimming squares at incremental depths, the robot started at the bottomof the tank and decreased

its depth by 200mm after each completion of a square (Fig. 3.6). The heave and yaw motions of the
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robot during the depth transitions appeared to be coupled. While the average turning anglewas found

tobe 90 ◦, equal to the fixeddepth case, the standarddeviationof the turning anglewas 14 ◦ as opposed

to 4 ◦ shownpreviously. This increased variation in turning anglewas particularly prevalent in turning

maneuvers immediately following depth transitions (transitions shown in red in Figure 3.6 C), and

introduced drift on the congruence of the squares. The average turning radius during the experiment

was found to be 97mm, or approximately 1 BL. While completing a square at each prescribed depth,

the robot performed as expected, with an average swimming speed of 55mm/s (0.55 BL/s) and an

average segment length of 403mm (~4 BL), both consistent with previous experiments.

Additional experiments on swimming straight-line trajectories based on IMU readings can be

found in my related work on fish swimming and schooling75.

Homing to a Light Source with a Photodiode

As a precursor to multi-robot navigation and coordination based on exteroceptive sensing, we also

tested homing to a light source. In general, homing behaviors are a valuable primitive for enabling

autonomous behaviors based on a global stimulus, such as autonomous charging or data transfer. To

achieve homing, our robot has a front facing photodiode with a narrow viewing angle. The photodi-

ode was used to perceive a light signal, which has the shape of a bell curve, peaking whenever the light

is directly faced. The threshold for detection of the light source was either sampled during an initial

360 ◦ turn, or preset from a separate light characterization experiment. As a source, we used a 4-LED

rod emitting blue light, which propagates best in water.

The robot controlwasprogrammed to turn left until the light intensity crosses thedetection thresh-

old, then swim towards the source. It starts turning again to realign with the source whenever the

intensity value falls below the threshold for reasons such as drift. The implemented homing behavior

allowed the robot to recover from any position, therefore guaranteeing robustness.

To test homing, we conducted the following experiment. We placed the LED rod at the south end
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Submerged Homing
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Figure 3.7: Homing to a light source — trajectories from twelve experiments. Experiments were conducted using four
initial orientations (denoted by trajectory color), and from initial positions near the center of each of the three unlit tank
walls. Experiments were ended when the robot reached a hemispherical zone surrounding the LED rod denoted in orange.

and started the robot in the remaining three extremes of the tank (N,E,W), oriented in four direc-

tions (N,E,S,W). In total we did 48 trials. We measured success by seeing if the robot always reached

an approximately two body length hemispherical zone surrounding the LED rod. Inside this zone,

tracking was found to be unreliable as the blue light from the LED rod significantly altered the color

of the robot in both the overhead and side videos.

Figure 3.7 shows a subset of 12 trajectories. We observed that the robot occasionally lost the LED

rod, resulting in a full loop until it was reacquired. We consider the trials very successful because in

each case, losing the LED rod was not fatal to the experiment’s objective, and the robot successfully

tracked to the hemispherical target zone, validating the robustness of the homing behavior.

The experimentwas extended tomoving back and forth between two sources, whichwere switched

on and off alternately. This extension hints toward the robot’s potential to recover from a signal loss,

realignwith a source that changedposition, or followamoving source. Moreover, the robot’s behavior

maybe interrupted and alteredby a signal that is suddenly switchedon, for instance to initiate homing.
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3.2.3 Discussion of Alternative 3D Locomotion

Our locomotion approach is geared toward high robot maneuverability at low actuator maintenance

and space requirements. Several other groups have designed miniature robots for laboratory environ-

ments. Most examples involve a single actuator system to achieve low cost and small size. Kopman et

al. presented a robot (117mm in length, $ 100) with a fin actuated by a waterproof servomotor76. In

Clark et al.’s robot (58mm) afin is drivenby an electromagnetic actuator77. Yet other designs have fins

powered by piezo-electric actuators, such as the one by Aureli et al. (100mm)78. In these single-fin

robots, forwardmotion is achieved by symmetric flapping of the fin, and large-radius turning (i.e., not

on-the-spot) is achieved by biasing the flapping. Takada et al. also presented a robot with a fin driven

by an electromagnetic actuator79; in addition to planar motion, this robot is also able to pitch using

an internal servomotor that shifts the robot’s center of mass. All of these examples rely on flapping

actuation, in part because propellers are hard tominiaturize while still sealing the movingmechanism

in a way that is reliable. Toy submarines for example can be based on small propellers; however, their

reliability is extremely limited.

At slightly larger sizes (~250mm), several groups have designed 3D maneuverable robots using

multiple actuators including propellers, servomotors, and pumps80. For example, the Jeff robot

(250mm, $ 1300) was designed as part of the CoCoRo project, and is intended for operation in col-

lectives81. It uses two vertically-stacked propellers at the back for forwardmotion and pitch variation,

another propeller for turning on the spot, and piston-based buoyancy modulation for in-place depth

control. The propellers use custom-designed magnetic shaft couplings, which are relatively large and

expensive but eliminate the waterproofing issues associated with a body-penetrating shaft.

Other robots in this range use flapping-fin based designs, with both rear/caudal and side/pectoral

fins controlled by multiple servomotors. Examples include the Jessiko robot82 (220mm) and the

boxfish-inspired robot byHu et al.83 (350mm). The use of multiple flapping fins allows these robots

38



to achieve forward motion, turning, pitch control, and in some cases rapid braking. A third propul-

sionmechanism for 3Dmaneuverability is the use of multiple internal pumps. For example the robot

by Bhattacharyya et al.84 (203mm) uses four internal pumps to suck water from inlets and distribute

it to outlets, creating jets to control five degrees of freedom. The robots described in this paragraph,

while having high degrees ofmaneuverability and reliability, use sophisticatedmeans of actuation that

are not easily scaled down in size and cost.

In our design, we developed a robot withmultiple propulsors to control 3Dmotion using an actu-

ation strategy that is easy to manufacture (no complex sealing hardware), low-cost, and small profile.

To achieve this, we took inspiration from one of the actuators used in miniature robots, namely the

electromagnetic actuator77,79, and modified it for a multiple fin design. Our electromagnetic actua-

tor is ideal forminiature robots and enables increasedmaneuverability for considerablymore complex

motion and autonomous control compared to previous robots at the same scale. A limitation of our

propulsor is, however, that it cannot be scaled up without becoming severely inefficient as we discuss

in the supplement of our publication on robot locomotion and maneuverability73.

3.3 Scaling up to a Swarm

Designing a robot that lends itself to be manufactured efficiently and operated in a swarm requires

careful thought about components, fabrication, handling, and testing10,85. Our goals were to build

tens of robots with minimal need for maintenance that can be run by a single researcher without

having to program each robot individually.

3.3.1 Operating a Swarm

Bluebot is designed to be easy tomanufacture, recharge, andprogram in order to facilitatemulti-robot

operations (Fig. 3.8). Up to ten Bluebots can be put on a custom charging rig simultaneously. The
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Figure 3.8: Bluebot electronics. (A) A photodiode, a pressure sensor, and pins for charging and switching the robot on/off
penetrate the body. (B) Sensors (blue) and actuators (green) are internally routed to a custom PCB and connected to a
Raspberry Pi Zero W onboard computer. The cameras (red) are operated via a duplexer board that enables fast switching
(~20 μs) between them. (C) Several Bluebots can be charged simultaneously on a custom charging rail.

robots have an onboard charging circuitry (LTC2954), and the rig is powered from a power supply

at 10 V. Similarly, programming multiple robots with a single command is possible using the Wi-Fi

module of the onboard computer (Raspberry Pi Zero W). Programs (implemented in Python3) can

be started simultaneously on multiple robots: a light pulse perceived by the robots’ forward-facing

photodiodes (VTP1112H) causes switching from an idle loop to the main program. Experimental

data from the perspective of Bluebots can be logged onboard on a microSD card. For instance, data

from a pressure sensor (TE connectivity MS5803-02BA) was used to reconstruct diving depths. All

electronics are connected to a custom printed circuit board (PCB,OSHPark). A 7.4V 950mAh bat-
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tery (Turnigy) provides power for run times of up to 2 h, whereby the onboard voltage is reduced to

5V by a step-down voltage regulator (Pololu D24V90F5). Bluebot is switched on and off with a cus-

tom ignition key that applies 3.7V to two external pins, which are connected to an on/off controller

(LTC2954). The controller also automatically shuts down the robot if battery is low.

3.3.2 Building a Swarm

Assembling a Bluebot takes roughly six hours, and starts with the installation of all actuators, cameras,

and electronics inside the two 3D-printed plastic halves (Stratasys PolyJet Objet500), continues with

soldering all electronic components to the PCB and sealing those components that penetrate the body

from the inside, and concludes with fusing the two halves into a single robot using plastic bonding

epoxy (Loctite). Passive stability in roll and pitch as well as near-neutral buoyancy are achieved by

careful placing of components such that the center of mass is directly below the center of buoyancy.

A small compartment on the ventral side of Bluebot, which is sealed from the rest of the body and

opened with a single bolt, allows for fine tuning of buoyancy with additional mass blocks.

3.3.3 Testing Arena

All experimentswere conducted in a 1.78m×1.78m×1.17m freshwater tank (Fig. 3.9)73, which had

a depth of 0.91m (effectively 13.7 BL× 13.7 BL× 7.0 BL). Most experiments are under ten minutes

in length; the robots have a top speed of 1.15 BL/s and are able to cross the surface of the tank in about

11.9 seconds. A DSLR camera was mounted above the tank to film experiments and allow for planar

tracking of individual robots. Experimental data including diving depth values along the vertical di-

mension were acquired onboard the robots. The reconstruction of 3D robot trajectories was possible

from video materials and depth values and validated in previous research73. A custom-built software

automates large parts of this reconstruction, only asking for user intervention when there is potential
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Figure 3.9: Tank setup. Experiments were conducted in a 1.78m × 1.78m × 1.17m tank. The main camera used to
track horizontal movements is mounted above the tank (left). Additional cameras were placed outside and inside the tank
to produce the supplemental videos (right).

for ambiguity. The software works by first tracking the video data for Bluebot positions using image

processing techniques, then isolating the trajectories of individual robots, and finally matching these

trajectories spatially and temporally with depth values from the Bluebots’ pressure sensors and fus-

ing all the data to recreate individual 3D trajectories. Our experimental protocol and procedures for

multi-robot tracking are described in Appendix A.2
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4
ARealistic Three-dimensional Simulation

Environment

Only experiments with physical robots can expose behavioral algorithms to the full com-

plexity of real-world physics and test their robustness against hidden failure modes. However, such

physical robot experiments are complicated and time consuming compared to the many parameter
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sweeps that can easily be done in simulation. A simulator that captures essential parts of the robot

dynamics and visual interactions is still extremely valuable in accelerating the design of new collective

behaviors because it allows to easily experimentwith a handful or several dozens of robots, ideal versus

noisy locomotion and perception, and environments much larger than our physical tank.

In this chapter, I explain how I modelled Bluebot’s perception and dynamics to build a realistic

and physically-validated simulator named Bluesim. My two main goals were that: i) robot behav-

iors implemented in simulation can be easily transferred to the physical Bluebots; and ii) reasonably

similar observations can be made by analysing the results of simulations and corresponding physical

experiments.

4.1 Simulator Architecture

TheBluesim simulator has a central database that keeps track of positions, velocities, relative positions,

and distances of all simulated robots. The robots are ordered by a heap data structure, and simulated

asynchronously and one at a time. Each robot has access to a local view of its environment; all robots

have the same dynamics. Robot variables such as cognition speed or visual range can be changed, as

can the perception complexity by introduction of noise, occlusions, and LED parsing. The decision

making algorithms use the same logic in simulation and on the physical robots. Their syntax looks

alike with Python3 being used everywhere to facilitate simulator-to-robot transitions. I explain the

architecture of Bluesim in further detail by going through one simulation iteration for one robot in

Algorithm 1 and Figure 4.1 A. The simulation results are stored in data files from which figures and

animations can be generated (Fig. 4.1 B–C).
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Figure 4.1: Bluesim architecture. (A) Robots are sorted in a heap (1,2,7), pull information from a database that keeps track
of all robot positions (3,6), and execute behavioral code locally (4). Separate modules simulate perception (3) and dynamics
(5). See Algorithm 1 for details. (B) Simulation results can be animated and analyzed from different viewing angles. (C) Top
view on six instances of the evasive fountain maneuver (predator in red).

4.2 Bluebot PerceptionModel

Whendecidingwhere tomovenext, Bluebots rely on their local perceptionofneighbors, anddecisions

can be made based on visible neighbors only. Therefore, the perception of Bluebot was replicated by

simulating its visual range (3m) and narrow posterior blind spot, as well as neighbor occlusions. In

addition, Bluebots use imperfect algorithms to parse the multitude of LEDs, remove reflections from

the water surface, and assign triplets to individual neighbors. The Bluebot perceptionmodel contains

reverse geometry to calculate individual LED positions from an idealized robot location in order to

test such algorithms.

Bluebot’s blind spot is modelled as a cuboid corridor. A neighbor within the blind spot has a

relative angleα greater than π/2anda lateral distanced smaller thanhalf the cuboidwidthw = 50mm

(Fig. 4.2 A). Bluebots can also be hidden behind each other (Fig. 4.2 B). For such occlusions, each
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Algorithm 1:One iteration for one robot in Bluesim.
1 A robot got selected for a simulation step because it had the lowest time of all robots

in the heap.
2 The duration of the simulation step is drawn as a normal deviate with a mean

equivalent to the expected duration of a single perception-cognition-action cycle
(0.5 s), and a standard deviation of 10% (0.05 s).

3 The robot gets its current local view from the central database. This includes either
the set of visible LEDs after occlusions, or the relative positions and distances to
visible robots if parsing is not simulated.

4 Based on this local view, the robot decides on where to move next according to the
pre-programmed behavior and respective algorithms.

5 The dynamics of the robot are simulated for the drawn duration according to where
the robot decided to move.

6 The attained new position and velocity is entered in the central database. The
respective relative positions and distances to neighbors are recalculated.

7 The robot re-enters the heap with updated time = time + duration (and not
necessarily at the end of the heap, allowing to alter the robot order).

robot was geometrically simplified as a visually blocking sphere of radius 50mm that forms the upper

base of a blocking conical frustum. Occlusions can be detected by checking whether the relative angle

β between two neighbors is smaller than the opening angle δ of the cone between the closer neighbor

and the observing Bluebot.

Robots outside the visual range, inside the blind spot, or hidden behind another robot get removed

from the set of neighbors taken into account for local decision making. For the remaining robots,

positional information can be returned in two ways: i) at the robot level with perfect or noisy relative

distance and heading; ii) at the LED level including reflections at the water surface, which allows for

the testing of LED parsing and tracking algorithms.

The perception of individual LEDs including reflections at thewater surface can be simulated since

the central database keeps track of the xyz (surge, sway, heave) positions and heading orientation φ

(yaw) of all robots. For simplicity, the robot’s position coincides with the upper posterior LED 1. By
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Figure 4.2: Bluebots have near‐omnidirectional perception. (A) Robots can be hidden in the blind spot if α > π/2 and
d < w/2. (B) Robots can be occluded by other robots if β < δ.

the known distance δ = 86mm to the lower posterior LED 2 and upper anterior LED 3 (Fig. 3.2),

we can calculate the three LED positions (Eq. 4.1):

xLED1 = xrobot xLED2 = xLED1 xLED3 = xLED1 + cos φ · δ

yLED1 = yrobot yLED2 = yLED1 yLED3 = yLED1 + sin φ · δ

zLED1 = zrobot zLED2 = zLED1 + δ zLED3 = zLED1

(4.1)

Surface reflections are added as duplicate LEDs with identical xy-positions but a new z-position,

mirrored at the water surface (Eq. 4.2):

xreflected = xLED yreflected = yLED zreflected = −zLED (4.2)

4.3 Bluebot DynamicsModel

Imodelled the dynamics of Bluebot as a non-linear time-invariant system, and expressed the equations

of motion as a set of four second order differential equations (Fig. 4.3, Table 4.1, Eq. 4.3–4.6). The

forward motion along the x-axis (Eq. 4.3), for instance, depends on the thrust forces generated by all

fins acting in that direction, and is opposedby the parasitic drag onBluebot’s body as itmoves through

the water. Other motions along and around the y- and z-axes follow accordingly. Note that Bluebot
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Figure 4.3: Bluebot’s dynamics are modelled as a non‐linear time‐invariant system. Propulsive forces are in red, buoyant
force in black, and the coordinate system is indicated by dashed lines. Abbreviations: caud — caudal, dors — dorsal, PL/PR
— pectoral left/right, buoy — buoyant.

has four degrees of freedom in total because I made it passively stable against rotations around the x-

and y-axes (roll and pitch) by placing its center of gravity below the center of buoyancy. Consequently,

Bluebot’s planar motions in the xy-plane are decoupled from vertical motions along the z-axis; two

separate proportional controllers use feedback from the vision system and a pressure sensor for 3D

underwater navigation.

Translational motion along the x-axis:

ẍ =
1
m

Fcaud − sin γpect(FPL + FPR)︸ ︷︷ ︸
thrust

− 1
2
ρcdxAxsgn(ẋ)ẋ2︸ ︷︷ ︸

drag

 (4.3)
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Symbol Unit Value Description

F mN 0-20 empirical thrust forces
cd - 0.5-2.1 estimated drag coefficients
A m2 0.004-0.011 reference areas
m kg 0.500 robot inertial mass
I kgm2 7.23× 10−4 robot moment of inertia
l m 0.150 robot length (incl. fin)

γpect rad π/6 pectoral angle
dpect m 0.055 pectoral distance
ρ kg/m3 998 water density

Table 4.1: Parameters for the robot model.

Translational motion along the y-axis:

ÿ =
1
m

(
cos γpect(FPL − FPR)−

1
2
ρcdyAysgn(ẏ)ẏ2

)
(4.4)

Translational motion along the z-axis:

z̈ =
1
m

(
Fdors − Fbuoy −

1
2
ρcdzAzsgn(ż)ż2

)
(4.5)

Rotational motion around the z-axis:

φ̈ =
1
I

(
dpect cos γpect(FPL − FPR)−

1
2
ρcdφAφsgn(φ̇)

l
6
φ̇2

)
(4.6)

I simulatedBluebot’smotionby solving these equations continuously usingEuler integration. The

dynamics were based on measured parameters from experimentation (thrust forces of fins), the com-

puter design (mass, characteristic dimensions, cross-sectional areas), and comparisons to similar struc-

tures (drag coefficients) to closely match the physical motion of Bluebot. The simulator was further

physically validated by running identical experiments in simulation and with a single Bluebot, and
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fine-tuning parameters until the results matched well. Because Bluebots are strong enough to over-

come turbulence induced by fellow robots and collisions occur rarely, I decided not to model them.

Bluesim was used to develop and test the behaviors outlined in the upcoming chapters. It further

enabled experiments with idealized perception and larger swarms that provided insights into the ro-

bustness and scalability of our algorithmic implementations.
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5
Implicit Coordination for

Three-dimensional Collective Behaviors

Implicit coordination allows a group of fish or robots to coordinate without having to commu-

nicate directly among one another. Each member of the group continuously expresses its status to all

others through action or mere presence. To coordinate, all members periodically observe and inter-
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pret the available information in their local neighborhood. Such implicit coordination constitutes a

compelling approach to scalable, robust and effective swarming because it is naturally decentralized,

resilient to individual failures and parallel. It further reduces communication complexity in environ-

ments where direct explicit message passing is not possible or not desired. The underwater world is

one such environment where robot collectives have struggled to achieve group coordination because

traditional above-ground approaches based on radio communication and supported by GPS data do

not work.

Blueswarm is the first 3D underwater collective that can self-organize with local implicit vision-

based coordination only. Bluebots have three LEDs for fellow robots to detect their position and

orientation. They achieve multiple 3D collective behaviors by exploiting biologically-inspired coordi-

nation techniques that are inherently robust to imperfect knowledge, and that enable the emergence

of complex and dynamic global behaviors from seemingly simple interactions.

For this work, we demonstrated well-studied classic collective behaviors like synchronization and

dispersion, introduced novel dynamic behaviors like circle formation and milling, and programmed

complex tasks such as search operations by connectingmultiple behaviors. By focusing on aminimal-

ist form of visual coordination, we were able to achieve versatility and demonstrate programmability

for an underwater robot swarm.

The chosen behaviors rely on different levels of implicit coordination. During synchronization

across time, Bluebots simply observe when the LEDs of neighbors are on but do not care about po-

sitional information. While milling, robots check whether any other robot is present in the front but

do not require their distance. Dispersion across space relies on the detection of direction and distance

to fellow robots. The search operation builds on dispersion and adds active signaling to trigger a be-

havioral change from dispersion to aggregation and homing. These examples show that implicit coor-

dination lends itself to the programming and composition of a wide variety of meaningful behaviors.

We further demonstrated the ability to replicate existing theory as well as study the theory-experiment
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gap, and tested the robustness of behaviors to perception errors.

All experiments were conducted with seven robots swimming in a confined freshwater tank of size

1.78× 1.78× 1.17 meters (or 13.7× 13.7× 9.0 body-lengths). Bluebots solely relied on local visual

information, which was acquired and processed onboard in real time, and imperfect motion due to

underwater inertia. No external global position information or centralized control was used, and all

3D trajectories were tracked for post-experiment analysis (see Appendix A.2).

5.1 Self-organizationacrossTimethroughVisualPhaseMatchingofLED

Flashings

Spontaneous synchrony is a classic example of self-organized coordination in time. Millions of fireflies

(Photuris lucicrescens) synchronize and flash in unison to attract mates every year (Fig. 5.1 A); studies

have shown that this global behavior emerges from individual fireflies visually detecting the flashes of

neighbors and adjusting to match their phase86. For Bluebots, the ability to synchronize can enable

time-coordinated actions like sampling of an environment. The approach presented here exploits

flashing as a tacit mechanism to achieve synchrony and is based on the well-known Mirollo-Strogatz

model87 (Fig. 5.1 B).

Bluebots were initialized with different start times and programmed to periodically flash with a

nominal time interval of tf = 15 s. The program running on each Bluebot (see Alg. 2) proceeded in

discrete time steps toward the next flash at tf, a 2-second-long light up of LEDs, by updating a counter

variable n. Whenever a Bluebot i flashed, all observing neighbors j jumped ahead bym = f(n) steps

(Eq. 5.1). Mirollo-Strogatz proved that synchrony is guaranteed under any monotonically increasing

and concave down function for f(n), for instance f(n) =
√
n:

ni = tf → nj = min(tf, nj +
√nj) ∀j ̸= i (5.1)
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Figure 5.1: Self‐organization across time. (A) Fireflies flashing in unison. (Source: iStock) (B)Mirollo‐Strogatz synchroniza‐
tion model: Firing agents pull up observers closer to their firing times, and the pull‐up magnitude increases monotonically
with time an observer spent already on a given firing cycle. Left: y fires, x is pulled up; right: x fires, y is pulled up; re‐
sult: their phase difference (red) was reduced. After multiple such rounds, x and y will fire in unison. (C) Seven Bluebots
observed LED flashes of neighboring robots and adjusted their flash cycles to achieve synchrony (solid) after three ini‐
tial rounds of desynchronized flashing (dashed). The standard deviation σ (STD) in flash times among robots disappeared
after four and seven rounds of synchronization for uniformly (blue) and randomly (red) distributed initializations, respec‐
tively. (D) Robots with randomly initialized flash times synchronized slower because they partitioned into two competing
subgroups (rounds 5 − 7). (E) Stills from the randomly initialized experiment show uncoordinated (top, round 1) and
synchronized (bottom, round 10) flashing.
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Algorithm 2:Coordination in Time Based on LED Flashings
1 INPUTS:
2 tf = 15 s # flash time interval
3 df = 2 s # flash duration
4 fthresh = 0.01 # brightness threshold for flash (empirically tuned)
5 INITIALIZE:
6 n = 0 # counter variable
7 tnow = time.time() # current time
8 tlastflash = tnow # time of last flash
9 tlastupdate = tnow # time of last counter variable update

10 MAIN:
11 while time coordination in progress do
12 Take 2 binary images (left and right) inm× nmatrix format with only black and

white pixels.
13 Update time: tnow = time.time()
14 if mean brightness in either image > fthresh then
15 Flash detected: Δt =

√
tnow − tlastflash

16 else
17 No flash detected: Δt = tnow − tlastupdate
18 Update counter variable: n = n+ Δt
19 Update time of last counter variable update: tlastupdate = tnow
20 if n ≥ tf then
21 Flash LEDs for df seconds
22 Reset counter variable: n = 0
23 Update time of last flash: tlastflash = tnow

Bluebots checked for flashes by capturing images with both cameras and searching them for LED

blobs. This took up to 1 s, and the exact time of each capture is not controlled during that interval.

Therefore, a flash duration of 2 s turned out to be at the lower end in order to achieve reliable detection

without missing flashes. The 15 s long nominal time interval was chosen accordingly with the goal to

avoid substantial overlap of flashes among the robots (i.e., quasi-synchronization) at initialization.

Two types of experiments with seven Bluebots moving randomly underwater were run: one with
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all the robots initialized uniformly over the 15 s time interval, and one with the robots initialized ran-

domly, which often led to opposing sub-groups (a sort of worst case scenario). In both scenarios,

the discrepancy between flashing times quickly decayed as Bluebots achieved synchrony within 105

seconds (Fig. 5.1 C–E). Final standard deviations between flash times were as low as 0.20 s for the

uniform and 0.14 s for the random initialization. The total durations of synchronized flashes in the

final 13th rounds were 2.55 s for the uniform and 2.36 s for the random initialization, which are close

to the theoretical 2 s best case.

One of the key features of this algorithm is the simplicity of interactions: an individual Bluebot

does not need to distinguish between neighbors. Because of the importance of time synchronization

to many applications, several implementations of firefly inspired synchrony exist in sensor networks

and robots88–91. The results with Blueswarm show that this same approach also works well underwa-

ter, where access to global clocks is much more challenging than above ground.

5.2 Self-organization across Space through Attractive and Repulsive

Virtual Forces

Biological collectives also self-organize spatially, for example fish shoals disperse over a region to feed

or defend, but stay connected as a group7 (Fig. 5.2 A). Control over the spread of a robotic col-

lective is important, for instance, to disperse robots for better coverage during environmental sam-

pling or search, or to aggregate robots for recovery8. Fish shoaling and dispersion have been exten-

sively modelled7,24,92,93. Most models assume that an individual fish experiences virtual forces from

nearby neighbors based on distance, with neighbors that are too close repelling and those further

away attracting, although the exact form of the virtual forces is unknown7. Controlled dispersion

has also been extensively implemented in 2D ground robots, ocean surface robots, and some 3D aerial

robots12,14,33,41,42,94; typically, robots detect relative positions of neighbors by using an infrared com-
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munication ring or by explicitly exchanging GPS positions wirelessly. In contrast, fish use vision to

determine relative positions of neighbors, and implicitly react without any direct communication.

Regardless of implementation, the emergent result of the virtual force model is the same: the fish

school or robot swarm tends to disperse over an area, and the balance of repulsive versus attractive

forces determines the density and spread of the group7.

To demonstrate coordination in space, I implemented fish-inspired dispersion using implicit in-

teractions: each Bluebot attempts to visually determine the relative distance and bearing of all visi-

ble neighbors in real-time, compute their forces, and then move in the direction of the resulting 3D

motion vector (Fig. 5.2 B, Alg. 3). I picked a commonly-used artificial potential, the Lennard-Jones

potential8,93,95,96, to model the non-linear interaction between robots based on relative positions ex-

tracted in real time from onboard vision. A single adjustable parameter, namely a target neighbor

distance dt, controls the spacing of the collective. Neighbors j closer than dt exert a repulsive force on

a robot iwhich approaches infinity as robots collide, neighbors farther away an attractive force which

decreases to zero for far away neighbors (Fig. 5.2 C). The force contributions Fij of allN visible neigh-

bors are obtained by taking the first derivative of the Lennard-Jones potentialVij with respect to their

distances |rij|. The average of all individual forces multiplied with the respective relative positions rij

determines the next move vector pi of a robot i:

pi =
1
N

N∑
j=1

Fijrij =
1
N

N∑
j=1

∂Vij

∂|rij|
rij

=
1
N

N∑
j=1

− 1
|rij|

[
a
(

dt
|rij|

)a
− 2b

(
dt
|rij|

)b
]
rij ∀j ̸= i

(5.2)

Individual forces are repulsive (<< 0) if robots are closer than a target distance dt and attractive

(> 0) otherwise (Fig. 5.2 C). The individual force magnitudes scale non-linearly with distance be-
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Figure 5.2: Self‐organization across space. (A) A shoal of surgeonfish foraging in a reef. (B)During aggregation‐dispersion,
a Bluebot (black) calculates its next move (black vector) as the weighted average of all attractive (blue) and repulsive (red)
forces from neighboring robots. (C) Inter‐robot forces (red) are calculated as the first derivative of the corresponding
Lennard‐Jones potential (blue) with standard parameters a = 12 and b = 6, and a tunable target distance dt (= 2 BL).
The forces f are dependent on the distance d between robots: f = 0 for d = dt, f << 0 for d < dt (repulsive),
f > 0 for d > dt (attractive). The target distance dt defines the robot density of the collective. (D‐F) 3D dispersion
(blue markers, dt = 2 BL) and aggregation (red markers, dt = 0.75 BL) with seven Bluebots. Robot density ρ changed
eightyfold; ρ = 455m−3 equates to one individual per cube of BL, a density commonly observed in fish schools97. (G)
Dynamically repeated aggregation and dispersion by change of dt between 0.75 BL and 2 BL.
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Algorithm 3:Coordination in Space Based on Virtual Forces
1 INPUT:
2 dt # target distance (set to 0.75 BL for aggregation and 2 BL for dispersion)
3 MAIN:
4 while space coordination in progress do
5 Take 2 binary images (left and right) inm× nmatrix format with only black and

white pixels.
6 Obtain a list of blob centroids by running rapid LED blob detection (Alg. 6) on

each image.
7 Parse the LEDs and isolate individual neighbors (Section 3.1.2).
8 Derive the relative positions r and distances |r| to all neighbors (Section 3.1.2).
9 Calculate the next move vector p based on Equation 5.2.

10 Use the fins to move along p. Set fin power based on |p| and momentary error,
using proportional control.

tween robots with an emphasis on nearby neighbors that exert extreme repulsive forces to avoid colli-

sions, or significant attractive forces to maintain cohesion. The stronger the final averaged force, the

higher the oscillation frequencies of the actuated fins to swim toward the corresponding direction.

Bluebots move continuously to minimize the average of all forces, thereby achieving dispersion with

controllable density. The robots are not, however, moving into particular and stable formations.

5.2.1 Experimental Results

We tracked 3D trajectories for all experiments (see Appendix A.2), and report on several commonly

used metrics7, such as density, volume, and average nearest neighbor distance (NND). In the follow-

ing, we provide detailed analyses of the dispersion behavior, including an investigation of inter-robot

distances and the number of visible neighbors over the course of an experiment.
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Inter-robot Distances

We ran two types of experiments on dispersion with the same inter-robot target distances of 2 body

lengths for the dispersed and 0.75 body lengths for the aggregated state, respectively. In the first exper-

iment, seven Bluebots were centrally deployed and I set dt = 2 BL during the first 120 s (“dispersed

state”), and dt = 0.75 BL during the second 120 s (“aggregated state”) (Fig. 5.2 D). I measured robot

density ρ as the number of robotsN divided by the volumeV of their convex hull. Results show that

the robot density quickly plateaus within 30 s after dt is set (Fig. 5.2 F), and that a large density and

volume change can be achieved (ρ = 12m−3 andV = 0.568m3 in dispersed, and ρ = 990m−3 and

V = 0.007m3 in aggregated state). In the dispersed state, the convex hull of the Bluebots is able to

cover a large fraction of the tank (Fig. 5.2 E), amenable for coverage or search. In the aggregated state,

the robots group tightly together, although this creates collisions that temporarily break the group.

As an additional metric, I measured average nearest-neighbor distances NND = 0.8m (~6 BL) in

dispersed and NND = 0.2m (~1.5 BL) in aggregated state. The parameter dt acts as a conservative

lower bound for NND since a single too-near neighbor can trigger additional dispersion due to the

heavily non-linear Lennard-Jones potential. Experiments with dt > 2 BL did not increase disper-

sion because Bluebots started to collide with the tank boundary frequently. When fish congregate in

schools, typical densities are on the order of one fish per cubic body length97 with distances between

nearest neighbors ranging from 0.5 BL to 4 BL66, which is similar to distances achieved by Bluebots

during density control experiments.

Overall, Bluebots were able to hold the average distance to neighboring robots relatively constant

(Fig. 5.3 A). The differences in measured average distances among the robots are expected, and larger

in dispersed (~50 s – 100 s) than aggregated (~170 s – 230 s) state (Fig. 5.3 A): a robot positioned

around the center should have a lower average distance to neighbors compared to another robot at

the periphery. In contrast, the distance to a single nearest neighboring robot (NND) fluctuated con-
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Figure 5.3: Inter‐robot distances during single aggregation‐dispersion: (A) average distance to all neighboring robots; (B)
distance to the nearest neighboring robot (NND); (C) distance to the farthest neighboring robot (NND); (D) distance to
the momentary centroid of all robots. Colored solid lines represent individual robots; the black dashed line represent the
average of the seven‐robot collective.

siderably, especially during dispersion (Fig. 5.3 B). This shows that Bluebots continuously adjusted

their positions in an effort to minimize the virtual forces acting on them, whereby the nearest neigh-

bor is more likely to exert a strong force than far away neighbors. The distance to a single farthest

robot (Fig. 5.3 C) is generally larger than to the nearest robot (as expected), and within the longest

dimension (2.97m) of our test bed. Finally, the distances of all robots to their momentary collective

centroid demonstrates that they spread out effectively during dispersion (with some robots close and
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Figure 5.4: Inter‐robot distances during repeated aggregation‐dispersion: (A) average distance to all neighboring robots;
(B) distance to the nearest neighboring robot (NND); (C) distance to the farthest neighboring robot (NND); (D) distance to
the momentary centroid of all robots. Colored solid lines represent individual robots; the black dashed line represent the
average of the seven‐robot collective.

some far from the centroid), and reduced this spread during aggregation (Fig. 5.3 D).

To demonstrate dynamic and repeatable control over robot density, a second experiment was con-

ducted (Fig. 5.2 G), during which dt was varied four times in the following sequence: (dt = 2 BL,

t = 0 s), (dt = 0.75 BL, t = 30 s), (dt = 2 BL, t = 60 s), (dt = 0.75 BL, t = 90 s). The density

results mirror the results from the first experiment, showing that it is possible to quickly and repeat-

edly switch between dispersed and aggregated states. Interestingly the trajectories in this condition
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resemble trajectories seen during “flash expansion”5,7,98, where an aggregated group of fish or insects

are startled by an overhead predator and seem to “explode” away from the center of the group but then

later re-aggregate. In experiments with Bluebots, when the target distance shifts from aggregation to

dispersion, the artificial potential directs the robots away from the center of the swarm, seemingly

aligning their heading radially away from the center of the aggregation without any explicit alignment

sensing.

The average distances during dispersion and aggregation peaks are comparable between the two ex-

periments: approximately 1.2mand0.5m inFigure 5.4Aversus 1.3mand0.4m inFigure 5.3A.The

dynamic switching between dispersion and aggregation (Fig. 5.4 A–C) appears to yield marginally

more uniform inter-robot distances than programming robots to hold dispersion and aggregation for

prolonged durations (Fig. 5.3 A–C).

Number of Visible Neighbors

During dispersion, Bluebots estimate the distances to their visible neighbors from pairs of vertically

stacked LEDs they believe to belong to individual robots (Section 3.1.2). This estimation is noisy by

nature of the visual system, butmore drastic errors are introducedwhen the parsing algorithmmistak-

enly assumes two LEDs to belong together and represent a fellow robot. Furthermore, neighboring

robots may not be seen at all due to occlusions, and occasional “ghost robots” appear when surface

reflections of LEDs are not filtered out correctly.

During the first experiment on controlled dispersion (Fig. 5.2 F), Bluebots dispersed for 120 s and

aggregated for thenext 120 s. Fromtheir onboard logfiles, weknowhowmanyneighbors theybelieved

to see in each iteration. 8287 neighbor counts were made by all robots over the time of the entire

experiment. On average, individual robots saw between 3.9 and 4.7 neighbors during the experiment

(Fig. 5.5 A); in the ideal case each robot would see all 6 neighbors at all times. The collective median

was lower during dispersion (4.2) than aggregation (5.6),most likely becausemore robotswere hidden
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Figure 5.5: Number of visible robots during controlled dispersion: (A) for each ofN = 7 robots, averaged across time; (B)
for robot 7 at each sampling iteration; (C) for each of 25 equally spaced instances in time, averaged across the collective
ofN = 7 robots, showing the median, 25th and 75th percentiles, most extreme data points, and outliers.

in the blind spots (Fig. 5.5 C).

921 neighbor counts (11% of all counts) were greater than 6; i.e., impossible because there were

only 7 robots total (see Fig. 5.5 B for such instances). 11% is a lower bound for over-counting since

other counts might also include mistaken neighbor identifications. The main reason for over-counts

is incorrectly handled surface reflections leading to “ghost robots”. Such reflections always appear

higher up than the actual robots. As a consequence, over-counts introduce two systematic biases:

• Robots aggregate at the surface because over-counts appear high up and exert an additional

64



attractive force toward the surface.

• Over-counts magnify the z-component (depth) of dispersion (but not for robots that remain

at the surface and do not see over-counts).

Despite these shortcomings, the overall density of the collective could be controlled effectively, and

a large volume change could be achieved by changing the target distance parameter.

5.2.2 Simulation Results

In order to better understand how parameters affect behavior, and understand howwell experimental

results track theoretical models, I did additional experiments in simulation. Here I present scaling

intuition on the collective spread influenced by the inter-robot target distance and the number of

participating robots from an idealized 3D point-mass simulation.

The Effect of Target Distance andNumber of Robots onDispersion

I ran idealized 3D point-mass simulations to study the effect of the target distance and the number of

robots on dispersion. The simulations assumed holonomic point-mass robots with omnidirectional

perfect vision and constant speed locomotion (1 Bluebot body length per iteration). In this idealized

simulation, the environment was unbounded, and the number of robots could be varied easily, as

opposed to our physical experiments in a water tank.

Overall, the simulation results show that the resultant average distance between robots grows with

the prescribed target distance dt, and also with the number of robotsNR in the collective (Fig. 5.6 A–

D).Thedistance to the singlenearest neighboring robot (NND)grows linearlywith the target distance

as well, but tends to plateau with the number of robots (Fig. 5.6 E–F). Therefore, the target distance

is an effective predictor and control parameter for NND, regardless of the number of robots in the

collective. From the linear scalings between the average robot distance and target distance, as well
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Figure 5.6: Target distance and number of robots influence inter‐robot distances during dispersion: (A) the resultant av‐
erage distance betweenNR = 7 robots grows with the prescribed target distance dt; (B) the average distance between
NR = 50 robots is larger than for NR = 7 robots; (C) the simulation runs are repeatable and indicate a linear scaling
between the average robot distance and the target distance (BL = body length) for a fixed number of NR = 7 robots;
(D) the average robot distance also grows with NR for a fixed dt = 5 BL; (E) moreover, the distance to the nearest
neighboring robot (NND) grows linearly with dt; (F) however, NND does not grow with NR. Subfigures (A,B) show the
time series of a single experiment; (C–F) show the means (red circles) and standard deviations (blue lines) fromN = 10
simulation runs per data point.
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as NND and target distance (Fig. 5.6 C,E), we conclude that it should be theoretically possible to

accurately control the spread of a robot collective with the potential-based dispersion protocol used

in our real robot experiments.

There is a gap between theory and practice however: in simulation, seven robots spread to average

distances of approximately 0.2m and 0.34m for dt = 0.75 body lengths (BL) and dt = 2 BL, respec-

tively (Fig. 5.6 C), while in practice 0.4m and 1.3m were measured for the same dt = 0.75 BL and

dt = 2 BL (Fig. 5.3 A). Two differences between simulations and real robot experiments that could

potentially explain this discrepancy are:

• The robots in simulation have perfect vision and see all neighbors at all times, while the real

robots do see a limited number of neighbors only (Section 5.2.1). Because of occlusions, it

is more likely that the real robots see close than distant neighbors. This may bias the virtual

forces toward repulsion and trigger larger than theoretically predicted dispersion.

• The robots in simulation move at constant speed, while the real robots adjust their speeds (or

fin frequencies, respectively) according to themagnitude of thenet virtual force. Because of the

non-linear nature of the potential-based virtual forces, repulsive forces are much stronger than

attractive forces. The mapping from attractive net forces to fin frequencies to robot speeds

may have been too weak to produce sufficiently strong aggregation in real robot experiments.

The Lennard-Jones potential is one of many possible potential functions for controlled disper-

sion. The above limitations could be addressed by selecting a different potential function that weighs

attractive forces more heavily, and/or enforcing a minimum robot speed even at very low net forces.

Although the dispersive effects are greater in the Blueswarm, this does not prevent the collective from

aggregating effectively and switching repeatedly between aggregated and dispersed states. Future ex-

perimental comparison of multiple dispersion algorithms can lead to a deeper understanding of prac-

tical issues and theory-realization gaps.
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5.2.3 Conclusions

Bluebots control their collective spread through decentralized attractive and repulsive virtual forces.

The collective is capable of changing the volume it covers up to eightyfold in our laboratory envi-

ronment (Fig. 5.2). Overall, the results show that at the system level, potential-based aggregation-

dispersion in 3D can be achieved underwater, using purely local visual interactions without external

assistance. Further analysis showed, however, that at the local level, Bluebots see fewer neighbors than

theoretically possible — 4.9 on average during the first experiment with expected loss due to occlu-

sion, and occasional misidentified robots due to reflections. In spite of this, the behavior is robust

and repeatable and allows for effective changes between low and high densities. In addition, idealized

point-mass simulations indicate that the resultant average distance between robots grows linearlywith

the prescribed target distance dt and sub-linearly with the number of robots, which shows that fine

control over the spread of a robot collective via dt is theoretically possible.

5.3 Dynamic Circle Formation and Milling based on Binary Sensing of

Neighbor Presence

Milling is an impressive dynamic formation commonly observed in fish schools when evading preda-

tors4,7 (Fig. 5.7 A), where the whole school coherently swims in a clockwise or anti-clockwise circu-

lar formation, often forming large 3D funnel or ball like shapes. Theoretical models of fish schools

suggest that milling may be achieved as a special case of flocking25–27, through a delicate balance be-

tween parameters for alignment and attraction-repulsion, or through radially asymmetric attraction-

repulsion. Currently however, such self-organized dynamics formations have not been implemented

in physical robots. Experimental studies with flocking in ground and aerial robots12,94 suggest that

detecting the alignment of neighbors is more challenging and noisy than determining position and

bearing, and in both cases alignment matching is achieved by robots explicitly exchanging messages
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with global heading information rather than local perception. Even in the alignment-free form27, the

system parameters need to be carefully tuned, although there is the potential for achievingmanymore

dynamic formations. Currently, it is not fully understood how fish schools actually achievemilling99,

and several biological studies suggest that fish and birds may react to a limited number of neighbors

rather than the whole neighborhood100,101.

Recently a new trend in swarm robotics has been the study of minimalist self-organization, using

models inspired by physics and derived by evolutionary algorithms; this work has shown that surpris-

ingly complex behaviors such as aggregation, clustering, and collective transport can be achieved by

agents with extremely simple neighborhood sensing (e.g., binary sensing of presence or absence of

neighbors, or analog sensing of the amount of neighbors)102–104. In one such study, a new behavioral

rule for milling-like formation was discovered through evolutionary means by one of my collabora-

tors30. Instead of reacting separately to each visible neighbor, this rule relies only on a single binary

source of information that indicates whether at least one other robot is within the line of sight. The

rule takes the form of a memoryless mapping from each of the two possible cases onto a predefined

locomotion pattern: in this case, turning slightly right if no one is visible and turning slightly left if

any robot is visible. For many values of turning radii, robots spontaneously aggregate30. However,

for some parameters, emergent circle formation was observed, where robots spread equidistantly in a

circle and rotated indefinitely. This emergent circle formation behaviorwas demonstrated in a simula-

tion for 2D ground-based robots under the assumption of zero inertia, but so far remains unvalidated

on physical robots.

Here, we demonstrate self-organized milling, or dynamic circle formation behavior, for 3D un-

derwater robots based on this minimalist formulation of milling. Instead of a line-of-sight sensor, the

behavior rulewe defined uses a triangular prismwith non-zero opening angle 2α (Fig. 5.7 B).We prove
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Figure 5.7: Self‐organized dynamic circle formation. (A) A school of barracudas milling. (Source: iStock) (B)Dynamic circle
formation with binary sensors: A robot turns clockwise if no other robots are present within a pre‐defined segment view
(orange) and counterclockwise if at least one robot is present (blue). The emergent circle size is determined by the angle of
view α and the number of robotsN (Eq. 5.3). (C)Dynamic circle formation on Blueswarm (arrows indicate robot headings).
(D‐F) Experimental data from 3D dynamic circle formation with seven Bluebots, where each Bluebot maintains a preferred
depth, resulting in a cylindrical shape: (D) Trajectories of all robots; (E) Distances to centroid of all robots (colors) and their
mean (black, dashed); (F) Depths of all robots. (G) Addition and removal of robots during a continuous 2D experiment
demonstrating robustness of the formation process and emergent adjustment of circle radiusR to the number of robots
N.
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that the radiusR of the emergent dynamic circle is (see end of this section):

R = ρ/
(
cos α − cos

(
2π
N

− α
))

, (5.3)

where ρ is the characteristic body length andN is the number of participating robots. Note that all

robots have the same fixed turning radius, but the actual radiusR of the circle emerges as a function of

the number of interacting robots and does not depend directly on turning radii; parameter limits are

discussed in Appendix A.3. To test dynamic circle formation on the Bluebots, we chose α = π/12,

so that a circle with all seven robots would fit within our tank. Each Bluebot used a pre-computed

mask on both cameras that returned a binary value based on whether at least one robot was within

the specified field of view. The Bluebot then moved clockwise or counterclockwise depending on its

sensor reading, whichwas achieved by actuating the caudal fin in conjunctionwith a pectoral fin, such

that the ratio of frequencies determines the turning radius. This program is shown in Algorithm 4.

5.3.1 Experimental Results

We tested dynamic circle formation and maintenance with seven Bluebots, all of them spread out

on the water surface randomly at initialization (Fig. 5.7 C–F). In our first experiment, we also pre-

programmed each robot to dive to a different preferred depth, such that the dynamic formation is

3D, forming a rotating cylinder similar to some natural observations of milling. Tracked 3D trajec-

tories are shown in Figure 5.7 D. The Bluebots were able to form and maintain the dynamic circle

formation for several minutes at a time, limited in part by collisions with the tank boundary. While

rotating, the Bluebots couldmaintain a radius accuracy of under 20% and a depth accuracy of within

5% (Fig. 5.7 E–F). Unlike simulated or 2D ground robots, the Bluebots are subject to inertia and im-

perfect motion, and our results suggest that this minimalist rule is robust to the real-world dynamics.

We also observed that the collective was often able to recover from collisions with the tank, forming
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Algorithm 4:Circling Based on Neighbor Presence
1 INPUT:
2 α = π/12 # defining angle of the prismatic field of view (FOV)
3 bthresh = 30 # brightness threshold for neighbor presence (empirically tuned)
4 MAIN:
5 Pre-compute masks that isolate the prismatic FOV in the left and right camera

images.
6 Run the caudal fin at 3Hz.
7 while circling in progress do
8 Take 2 binary images (left and right) inm× nmatrix format with only black and

white pixels.
9 Multiply the images with the respective masks. All pixels outside of the FOV are

now of value zero, i.e., black.
10 if total brightness in either image > bthresh then
11 Neighbor present: turn counterclockwise by running the right pectoral fin at

6Hz.
12 else
13 No neighbor present: turn clockwise by running the left pectoral fin at 6Hz.

a new circle after a short time period. We investigated this robustness further with a second experi-

ment, where we manually removed and added robots at different times to form circles with 5, 6, and

7 robots at the same depth (Fig. 5.7 G). The robots were able to reform the dynamic circle after each

perturbation in less than 30 seconds, even in the face of inter-robot collisions. The experiment also

confirmed that the radiusR of the emergent circle varies with the number of robotsN, yielding radii

R = (234, 357, 489) [mm] forN = (5, 6, 7) that are close to the predictions from Equation 5.3; i.e.,

(190, 309, 496) [mm].

Overall, these experiments show that we can achieve milling-like dynamic formations using this

simple emergent behavioral rule. The presence of substantial inertia in an underwater setting does

not prevent circle formation, however the instantaneous formation at any given time is qualitatively

less regular than previous simulations of inertia-free ground robots30. To the best of our knowledge
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this is the first implementation of emergent milling-like formations on physical robots. Our success

with milling also illustrates the opportunity for new forms of implicit coordination algorithms, more

similar to synchronization than dispersion, in that an individual agent does not need to explicitly de-

tect and react to all neighbors, but rather react anonymously or to some simple summary statistic

about the neighborhood (e.g., presence/absence, amount, optic flow, etc.). This may enable more

complex self-organization in real robots than previously possible.

5.3.2 Theoretical Results

Here we provide a simplified model overview to derive the radius of the dynamic circle formation; a

more detailed model with explicit bounds on all parameter values is presented in Appendix A.3. In

addition, we offer some intuition on how circles form.

Derivation of Circle Radius

Assume that we are given a number of robotsN, with an approximately circular body of radius ρ, and

with a binary sensor whose field of view is defined by the half-angle α. We can compute a formula for

the size of a “perfect” circle (Fig. 5.8 A), where each robot is placed equidistant along a circle, oriented

in a clockwise direction such that each robot’s field of view is empty but just on the edge of detecting

the robot in front of it. In this configuration, each robot’s binary sensor will detect a zero and the

robot will turn clockwise in the next time step. If we consider two adjacent robots and the triangle

formed between them (Fig. 5.8 B), we can use trigonometry to derive the formula for the radius of this

perfect circle. In the uppermost triangle in Figure 5.8 B, we have:

tan α =
R− R cosΘ − ρ cos α

R sinΘ + ρ sin α

which can be rearranged to give:
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Figure 5.8: Dynamic circle formation geometries. (A) A regular polygon configuration with field‐of‐view sensors. Only
two robots are shown for simplicity; additional robots lie on each vertex of the polygon. (B) Geometry for calculating the
milling radius R with field‐of‐view sensors (γ, interrobot distance). (C) Scaling intuition based on Equation 5.3 for circle
radiiR with nominal parameters (blue) and doubling of robotsN (red), robot size ρ (yellow), and viewing angle α (purple),
respectively.

R =
ρ

cos α − cosΘ cos α − sinΘ sin α

By simplifying the denominator using trigonometric identities and noting that Θ = 2π/N for

equidistant robots, we obtain Equation 5.3 and see that larger circles result from more participating

robotsN as well as larger viewing angles α and body sizes ρwhich cause robots to see each other more

easily (Fig. 5.8 C):

R =
ρ

cos α − cos
(2π
N − α

)
GivenN robots in a perfect circle, we can show that this circle rotates stably under certain assump-

tions. Full proofs and assumptions are provided in Appendix A.3, here we describe the intuition

behind the stability. One key assumption is that the robots’ clockwise turning radius when the sensor

reports no other robots, r0, must be smaller than or equal to the milling radius: r0 ≤ R. Intuitively

we can see that if the turning radius is perfect, i.e., r0 = R, then all the robots will simply rotate in

that circle without ever being perturbed; in fact, milling is smoothest if the two values are similar. If
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Figure 5.9: Milling is a following behavior. Snapshots of a simulation: (A,D) All robots start and finish with the same rule
set for circle formation (0 s − 90 s and 130 s − 240 s). (B,C) The red robot swims a straight line at intermediate times
(90 s− 130 s) without any others changing their behavioral rules.

r0 is less than R, then in the next step, each robot will rotate slightly into the circle and observe their

front neighbor intersect their field of view. This will cause an immediate response to rotate counter-

clockwise, once again putting them in the perfect circle. In addition to bounds on turning radii, there

are also bounds on α, ρ and response times, which are theoretically derived in Appendix A.3.

In our setting with a maximum of seven robots, we chose alpha to be π/12, which results in an

expected circle radius of 496mm (tank planar dimension is 1.78m× 1.78m). We tuned pectoral fin

actuation frequencies to 6Hz for clockwise and counterclockwise turning and ran the caudal fin at

3Hz to swim such circles.

Intuition for Circle Formation

While we were able to show that robots can maintain circles and derived a formula for circle size, the

formation of circles from random initialization is much harder to prove. Here I offer some intuition

on why circles form and back themwith a simple simulation. If we consider just one robot that turns

left when seeing anyone and right otherwise, that robot will follow anyone it sees. It namely turns

right until it sees anyone at first, then left, because it saw someone, then right because it is no longer

seeing this someone, and so on. In brief: dynamic circle formation andmilling is a following behavior.

If everyone follows everyone but no one is opinionated on where to go, a circle forms.
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In simulation, I started offwith the circle formation described inAlgorithm 4. I then programmed

one single robot, the one in red, to abandon the circle rules and instead embark on a straight line. The

group of robots transitions to leader following, and this can also transition back to milling whenever

the red robot changes back to the same rule set that all the others use (Fig. 5.9).

5.4 Multi-behavior Collective Search with Transitions from Search to

Gather and Alert

In fish, robots, or even human collectives, thework of scanning surroundings can be shared among the

constituent individuals, potentially reducing the burden on each individual while achieving a higher

level of collective vigilance. Schooling fish, for instance, find food faster as group size increases105,

and each fish can devote more time to feeding since all others are also watching for predators106,107.

Swarmsofunderwater robotsmay also exploit this “many eyes” effect for collective samplingof oceanic

data, mapping of plumes in coastal waters18,36, or faster search and rescue missions in collaboration

with ocean surface and aerial robots16,23. Since a search operation may involve several subtasks, it is

also a motivational example for swarm programmability, where multiple collective behaviors must be

sequenced together67,108.

In this search experiment, seven Bluebots were placed at the center of the water surface and tasked

to search for a red-light source in a bottom corner of the tank (Fig. 5.10 A–E). To achieve this task,

Blueswarm combines three behaviors — Search, Alert, andGather—using flashing LEDs as a visual

signal to initiate behavioral transitions (Fig. 5.10 F). As a first step, the robots used the dispersion

behavior described earlier to collectively Search by spreading out in the tank (with dt = ∞ for un-

bounded dispersion). The first Bluebot to detect the red-light source (i.e., within a range of approxi-

mately 3 BL) switched toAlert behavior, where it holds its position and flashes its LEDs at 15Hz as a

signal to recruit others. As other robots observed the flashing signal, they switched off their LEDs and
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Figure 5.10: Search operation composed from multiple behaviors. (A‐D) Experimental validation: (A) Seven Bluebots
were deployed centrally and searched for a red‐light source at the left bottom corner of the tank. Robots switch between
three behaviors: Search, Gather, and Alert, indicated by blue, green and yellow in figure diagrams. (B) Initially, the robots
dispersed to cooperatively locate the source. The first robot detecting the source switched to Alert behavior, maintaining
position and flashing its LEDs (15Hz). (C)Other robots close by the source also detected it and switched to Alert. Further
away robots that had detected the flashing LEDs switched to Gather, turning off their LEDs and moving towards the
flashing robots. (D) The experiment concluded when all robots had found the red‐light source. (E) The timing of events
shows the cascade of information spreading. The first robot detected the source after20 s of controlled dispersion. Within
10 s, all other robots noticed its alert and started migrating toward the flashing LEDs. Incoming robots catching the light
source started flashing as well to reinforce the alert signal. The source was surrounded by all robots after 90 s. (F) During
search, all robots acted according to the same finite state machine.
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Algorithm 5:Multi-behavior Collective Search
1 INPUTS: Empirical parameters for sub-behaviors including red-blue threshold for

source detection, streak length for flash detection, and target distance for dispersion
2 MAIN:
3 status = “search” # initialize robot status to Search
4 whilemulti-behavior search in progress do
5 Check for red-light source by taking 2 RGB-images (left and right) and searching

for a blob with a high red-to-blue ratio.
6 if found source then
7 Update status to Alert: status = “alert”
8 Flash LEDs at 15Hz
9 else
10 Check for flashing neighbors in a sequence of 30 binary images (see Alg. 7).
11 if found flash then
12 Update status toGather: status = “gather”
13 Switch LEDs off
14 Swim toward flashing neighbor
15 else
16 Keep searching new areas by dispersing from neighbors (see Alg. 3).

moved toward the signal (Gather behavior). Once they were close to the red-light source, they also

started to flash, thereby reinforcing the Alert signal (Fig. 5.10). This search protocol is summarized

in Algorithm 5. Implementation details on detection of the red-light source and LED flashings are

discussed at the end of this section.

This search experiment demonstrates the ability to design composite behaviors using signaling as a

simple visual communicationmethod, combiningboth implicit collective behavior and simple explicit

state signaling, which allows a leaderless group to work together efficiently on a complex task. The

Gather behavior mimics the recruitment seen in natural collectives, for example ants recruiting to

collectively transport large bait, or bees recruiting to high-value food sources1. A recent study suggests

that flashlight fish may use bioluminescent flashing to signal during nighttime schooling54. For a
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single robot searching alone, expected red-light source detection time theoretically increases to 1024

seconds (see end of this section). Blueswarmcompleted the search operation efficiently, with all robots

able to detect the sourcewithin~90 s, getting significantmileage from their collaboration (Fig. 5.10E).

5.4.1 Detection of LED Flashings and the Red-light Source

This composite behavior introduces signaling, where a robot flashes its LEDs at 15Hz and other

robots detect that a robot is flashing. Flash detection is achieved by an algorithm that is designed

and tuned to be robust to noise and robot motion (see Appendix A.4 and Alg. 7 for further details).

The Bluebot captures a rapid sequence of 30 images (in approximately 0.5 seconds) from each of its

cameras. The two sequences of images are analyzed separately for the presences of flashes. The flash

detection algorithm proceeds in three phases. Firstly, blob identification is performed on each image

in the sequence. Secondly, outlier blobs are identified between each two successive images. Outliers

are blobs that appear in some location in the first image and are not present in the second anywhere

within a small radius of that location. Thirdly, streaks of outliers are identified. A streak is a sequence

of outliers such that each outlier occurs within a small radius of the previous one. A flash detection

is declared if a streak is sufficiently long. The threshold radii for outlier and streak detection and the

minimum streak length for a flash detection were tuned empirically in the tank under experimental

conditions to give a good balance between reliably identifying flashes and minimizing false positive

errors.

In addition, the robots also must detect a target that emits red light. This detection was tuned to

restrict the detection radius to be small (within 3 BL) so that robots would need to search the tank

before finding the target. Red-light source detectionworks by comparing the red and blue channels of

the image. For source detection, blob identification is performednot on the blue channel of the image,

but on the average of the channels (i.e., a greyscale version of the image). After blob identification is

performed, every blob larger than a predifined thresholdNb is considered a candidate to be the source.
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Blobs that are smaller are not considered to avoid noise and tomake sure that Bluebots can only detect

the source when they are sufficiently close to it. For each candidate blob, the blue and red values of all

the pixels within Moore distanceD of the blob’s centroid are summed up separately, and the ratio of

the red total to the blue total is calculated. A blob is considered to be red (i.e., the source), if this ratio

is larger than some value. In above experiments, this value was set to 1.2, and Nb = 3 and D = 2,

respectively.

5.4.2 Expected Search Time for a Single Robot

The search operation exploits cooperativity to be efficient. We can approximate the expected time for

red-light source detection if Bluebots do not collaborate, by using aMarkov chain tomodel a random

walk at 0.5 BL/s average speed on an undirected graphG. The vertices ofG are the integers 0, · · · , n

and represent distance to the red-light source. The source is at vertex n = 40, the center of the water

surface (initial Bluebot location) at vertex j = 24, and the furthest location to the source at vertex

0. For 1 ≤ i ≤ n − 1, vertex i is connected to vertex i − 1 and vertex i + 1 at a distance of 0.5 BL

(41 × 0.5 BL = 20.5 BL ≡ tank diagonal). In each 1 second long time step, a robot is assumed to

move toward or away from the source with equal probability. The expected time to find the source

is (n2 − j2) s = 1024 s (proof using linearity of expectations in Appendix A.4, cf. runtime of the

randomized algorithm for 2-SAT). While a random walk is not the most efficient search pattern for

an unknown space, our Bluebots are simple robots that so far lack the sensing/motion complexity

necessary for more sophisticated methods (e.g., simultaneous localization and mapping).
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6
Implicit Coordination with Headings:

Bioinspired Evasion

Predation plays an important role in balancing ecosystems and is one driver of evolution,

which pushes animal populations toward those individuals or groups which have evolved successful

escape strategies109,110. Such escape can be witnessed from tiny plankton111 to bird flocks112 and fish
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schools4,5. Particularly impressive are social preys that cooperate through local interactions to evade

predators collectively. Fish, for example, display several evasive behaviors, ranging from the fountain

maneuver4,5 to flash expansion and bait balls113. In doing so, schooling fish demonstrate collective

vigilance and resilience that leverages the cognition and actions of all individuals4,5.

We aimed to mimick the dynamic and parallel coordination of fish during predator attacks

(Fig. 6.1), using the example of the fountainmaneuver4,5,114. When a fish school performs a fountain

maneuver, the fish typically encircle the predator and reunite behind it, taking advantage of its high

inertia and letting it swim through the void. Many fish species use visual observations of nearby neigh-

bors6,46–48,115 and have evolved specialized visual patterns called schoolingmarks50 for such group co-

ordination that involves alignment before and dynamic evasion during an attack. Remarkably, many

schooling behaviors including predator evasion work with limited and decentralized coordination as

opposed to any one single fish permanently leading the school1,7,52,92.

A wealth of experimental and theoretical work exists on flocking and alignment as it is observed in

fish schools24,58–61. Biologists have described several advantages of schooling— among them protec-

tion from predatory attacks — and documented a range of evasive maneuvers4–6. Which maneuver

fish choose depends on the direction of the attack116; split behavior like the fountain maneuver is

triggered by attacks from behind. In contrast, the local mechanisms for evasive behaviors have been

less well understood. Only a single descriptive model of the fountain maneuver exists and proposes

that fish visually monitor the predator to maximize the rate of escape while minimizing the associ-

ated energetic cost117. To do so, fish are assumed to swim away from the predator at a constant angle

determined by the rear limit of their visual field.

For robotic swarms, the ability to escape threats or moving obstacles exemplifies complex dynamic

coordination that goes beyond simple and well-studied flocking118–120. With such coordination, a

group of underwater robots deployed to monitor coastal environments like coral reefs and harbors,

could, for instance, react cohesively to circumnavigate oncoming traffic. However, very few examples
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Figure 6.1: Evasive maneuvers. (A) A fish shoal reacts to a predatory dolphin by performing a fountain maneuver. (Source:
iStock) (B) Four Bluebots (130mm in length) react to a manually guided predator surrogate. Initially self‐aligned and
facing to the left (t = 0 s), the robots embark on fountain‐shaped trajectories to evade the predator, which inadvertently
moves through the middle of the shoal (t = 2 s until t = 16 s). Once the danger has passed, the Bluebots regroup and
realign (t = 36 s). Color‐coded initial positions and trajectories were added to the top left and bottom right snapshots,
respectively.
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exist of implementing bioinspired evasive manuevers in the robotics domain. Fish-inspired escape

was demonstrated with centrally-controlled ground robots121, and variations of flash expansion and

fountain maneuvers were implemented for obstacle avoidance with LEGO robots122. In computer

graphics, animations of the fountainmaneuver were created, however the underlying algorithms used

global knowledge that would not be available to fish or robots123. In contrast to evasive behaviors,

basic heading alignment has been well studied; collective alignment can be achieved with simple av-

eraging algorithms124 and was shown with ground-based robots that use local perception to detect

neighbor headings94 and with aerial robots that exchange GPS headings wirelessly12.

The behaviors discussed in the previous chapter all used at most the direction and distance of

robots, which can be inferred from the two posterior LEDs. As part of the fountainmaneuver, we ex-

perimented with alignment in order to achieve coordination into a swarmwhose members are coher-

ently pointed in the same direction. This behavior also relies on detecting the headings of neighbors

based on additional information gained from the anterior LED.

6.1 A BehavioralModel of the FountainManeuver

During a fountain maneuver, fish typically encircle a predator and realign behind it (Fig. 6.1). We

modelled the fountainmaneuver triggered by a predatory attack as a finite-state machine: robots start

in theAlign state and transition into theEvade state if theyDetect a predator (Fig. 6.2). As a predator,

we used two vertically stacked red LEDs on rod that was moved by a human.

6.1.1 Align

During alignment, Bluebots detect and track neighboring robots to infer their headings and rotate to-

ward the unweighted average heading. Following this simple averaging protocol, a convergence proof

(by induction) is straightforward under the assumption of accurate and fast enough perception and
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Figure 6.2: Fountain maneuver finite‐state machine. Yellow loop: Bluebots transition from the Align into the Evade state
if they detect a predator, or the Search state if they see a flashing neighbor (checked in every fifth iteration). Green loop:
Flash‐alerted Bluebots remain in the Search state until they detect the predator themselves and switch into the Evade
state. Blue loop: Bluebots transition from the Evade back into the Align state if they do not detect the predator for ten
consecutive iterations.

locomotion that lead to monotonically decreasing deviations in robot headings124. Our experiments

provide insight into how robustly alignment works with Bluebots’ imperfect inference of headings,

and how tight a convergence bound can be achieved. Here we used a Kalman filter to improve the

parsing of LEDs and tracking of neighboring robots by estimation of their positions.

6.1.2 Detect

In order to distinguish the predator (two red LEDs) from fellow robots (three blue LEDs), a Bluebot

derives the red-to-blue ratio of all LED blobs. A predator is detected if any two blobs have such a ratio

greater than 1.2 and are vertically stacked (fromwhich the distance is known as well). A Bluebot then

stops aligning and starts evading the predator.

In addition, Bluebots that have detected a predator can flash their LEDs (at 15Hz) to alert fellow

robots, programmed to check for flashing in a series of 30 images taken in burstmode at 60 frames-per-

second. Similar flashing alerts were observed in schools of anchovy, which roll their bodies to reflect

sunlight off their shiny silver ventral sides125.

The flashing signal as well as the distinction of LED colors have been used as well in Section 5.4.
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Figure 6.3: Fountain maneuver trajectories. (A) Tracked from an experiment with six Bluebots in the large tank. (B) Plotted
from a simulation with six robots. (A,B) Time (0 s – 27.5 s) indicated by color progression from dark (early) to light (late);
robots in blue, predator in red.

Here we tuned both to lean toward false negatives such that evasion is not triggered accidentally.

6.1.3 Evade

Inspired by a descriptivemodel of the fountainmaneuver117, Bluebots evade a predator by swimming

away while keeping it visible at a constant angle of |60 ◦|. The result is a fountain-shaped trajectory.

Bluebots detecting the predator to their right (or left) evade in counterclockwise (or clockwise) di-

rection, using the caudal and pectoral right (or left) fin. Once the predator can no longer be seen,

Bluebots complete the maneuver by going back to alignment. We added hysteresis to provide robust-

ness against sporadicmisses of the predator (i.e., false negatives due to occlusions), whichwould result

in premature (and potentially fatal) abandonment of evasion.

6.2 The FountainManeuver with Physical Robots

We ran experiments at two different test sites and demonstrated that self-organized fountain maneu-

vers are feasible despite limited perception quality and cognition speed paired with submerged but
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imperfect motion (Figures 6.1 B and 6.3–6.4). Our in-house testing environment is a square water

tank of size 1.78× 1.78× 1.17 meters or 13.7× 13.7× 9.0 body lengths (henceforth the small tank).

A larger circular water tank at the Olin College of Engineering had a diameter of 6.1m and a depth of

1.5m (henceforth the large tank).

When fish escape during a fountain maneuver, they dart away from the aligned school to keep

the predator at a safe distance and within their visual field117. Accordingly, the three key metrics for

Bluebots were: i) stable alignment with circular standard deviations σφ ≤ 0.5; ii) convergence to

a prescribed viewing angle Θ at which the predator is kept; iii) increased distance d to the predator

compared to not taking action. Although this behavior has been described extensively in fish litera-

ture4,5,113,117, it is mostly studied qualitatively without standard metrics for quantification.

The fountain maneuver can be split into two main dynamic parts: Align and Evade. Alignment

allows Bluebots tomove from a shoaling into a schooling state, enhancing collective order and prepar-

ing the school for effective predator evasion. As such, the behavior is also useful for formation control,

for example to migrate long distances efficiently.

In two experiments (red, blue) in the large tank, seven Bluebots aligned their headings φ after ap-

proximately 15 to 20 seconds, and achieved final average circular standard deviations σφ of 0.29 and

0.30, respectively (Fig. 6.4 A). During alignment, Bluebots detected 2.14 (red) and 2.19 (blue) neigh-

boring robots on average (means from2170 and 2143 sampleswith standard deviations 1.19 and 1.25).

The means and standard deviations at different times over the course of a single alignment run are

shown in Figure 6.5. Alignment worked robustly despite robot occlusions and robots that were dis-

carded due to parsing uncertainty. Since themeans fluctuated between approximately 1.5 and 3 visible

neighbors with significant variation among robots, we conclude that neither the unaligned shoaling

nor the aligned schooling state are advantageous for neighbor visibility. Consequently, visual interac-

tions are not facilitated by group alignment.

Bluebot trajectories during the evasion part resembled the fountain maneuver (Fig. 6.3 A).
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Figure 6.4: Blueswarm escapes the predator (hardware experiments). (A) Alignment with seven Bluebots: The circular
standard deviations σφ of the headings converged to means of 0.29 (red) and 0.30 (blue) after approximately 15 to 20
seconds. The inlet shows individual headings at selected times during the red experiment. (B–C) Escape with six Bluebots
(color‐coded): (B) Escape anglesΘ approached |60 ◦| (dashed line) during the fountain maneuver; (C) Distances d to the
predator were effectively increased by active evasion (solid lines) compared to remaining idle at the initial position (dashed
lines).

The robots rotated away from the predator and approached the prescribed |60 ◦| escape angle Θ

(Fig. 6.4 B). They maintained an average andminimal distance of 0.93m and 0.46m from the preda-

tor during active evasion, as opposed to 0.73m and 0.18m when remaining idle at their initial posi-

tions, an increase of 27% and 156%, respectively (Fig. 6.4 C).
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Figure 6.5: Bluebots do not see all neighbors at all times during alignment. Data shows the means (blue squares) and
standard deviations (black lines) ofN = 7 robots.

6.3 Robustness and Scalability from Simulation

Simulations allowed us to repeat experiments to statistically analyze robustness and scalability, as well

as to inform and refine algorithmic implementations for the physical-robot experiments (Figures 6.6–

6.9). We varied perception quality, neighbor visibility, cognition speed, and number of robots during

alignment, and simulated different escape angles Θ.

6.3.1 Perception quality

Alignment relies on the accurate detection of neighbor headings. In simulation, we compared align-

ment with perfect perception against realistic perception, modelled after Bluebot and including noisy

estimates for LED positions and robot headings (zero-mean Gaussians with standard deviations of

2mm and 10 ◦, respectively), as well as imperfect LED parsing (Fig. 6.6). This realistic perception

was used for the cognition and scalability simulations; alternative noise magnitudes are shown in

Figure 6.7. As expected, we found that LED position errors are more severe than noisy headings
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Figure 6.6: Robustness of alignment with seven simulated robots. (A) Perception quality matters critically for alignment.
Black: perfect perception; blue: noisy headings with N (μ = 0, σ = 10 ◦); red: noisy headings and parsing; yellow:
noisy headings, noisy LEDs withN (μ = 0, σ = 2mm), and parsing (realistic Bluebot perception); purple: noisy head‐
ings, noisy LEDs, parsing, and reduction to binary directions (heading right/left). (B) Alignment works robustly, regardless
of the number of visible robots, but takes longer with fewer visible robots. (C) Faster cognition results in faster align‐
ment. Cognition speeds below 1Hz impede the convergence of headings. All data points were averaged acrossN = 10
simulation runs.

(Fig. 6.6 A) because parsing relies on the heuristic that the posterior LEDs are stacked vertically, and

wrongly parsed robot LEDs introduce arbitrary headings.

Noisy Headings

The simple averaging algorithm for alignment is surprisingly robust to zero-meanGaussian noise with

standard deviations σϕ of up to 45 ◦ on the final headings (Fig. 6.7 A).We expect that due to the zero-

mean and unbiased nature of the noise, such heading errors average out across the collective and time.
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Figure 6.7: Perception quality affects alignment. (A) Zero‐mean Gaussian noise on heading estimates. (B) Zero‐mean
Gaussian noise on LED position estimates. (C) Forced parsing errors at different probabilities. (D) Heading estimates
reduced to eight, four, and two cardinal directions.

Furthermore, since perception is faster than locomotion, Bluebots motions act as a low-pass filter on

noisy heading observations.

Noisy LED Positions

In order to obtain neighbor headings, a Bluebot has to detect robot LEDs and parse them into groups

of three that belong to individual robots. Given three LEDs and the fact that the upper anterior

LED 3 is on a horizontal circle of known radius around the upper posterior LED 1, the quadratic

equation describing that circle can be solved, and the correct solution minimizes the vertical distance
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between LEDs 1 and 3 (see Eq. 3.2 in Section 3.1.2). Inaccurate LED position estimates can lead to

arbitrary heading estimates, namely when causing the choice of the wrong solution. We simulated

different levels of zero-mean Gaussian noise on the LED positions, and found that alignment works

up to standard deviations σLED of 4mm (Fig. 6.7 B).

Erroneous Parsing

On top of noise that may occur naturally due to imperfect sensing, we introduced artificial parsing

errors to demonstrate the importance of accurate parsing algorithms. Alignment works as long as

parsing errors occur with a probability lower than 20% (Fig. 6.7 C). This sets a performance bench-

mark for parsing algorithms.

Discretized Perception

It is unlikely that fish single out individuals in a dynamic school and derive their headings as exactly

as possible in order to align. Inspired by fish schooling, we simulated more minimalistic versions of

heading-based alignment, in which a robot simply estimates in which of eight, four, or two cardinal

directions each neighbor is heading. For instance, if perception was simplified to two cardinal direc-

tions, a robot only has to decide whether a neighbor is facing to the right (0 ◦ ≤ ϕ < 180 ◦) or

left (−180 ◦ ≤ ϕ < 0 ◦). A neighbor heading to the right gets assigned a heading angle of 90 ◦,

and a neighbor heading to the left a heading angle of−90 ◦. Following the standard alignment algo-

rithm, the robot then takes the average of all neighbor headings. Interestingly, simulation indicates

that precise heading information is not required for alignment: convergence with realistic perception

was similarly good for exact headings and headings that were reduced to eight, four, or two directions

(Fig. 6.7 D).
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6.3.2 Neighbor visibility

During alignmentwith seven robots, Bluebots detected approximately 2.2 out of 6 possible neighbors

on average with expected loss due to occlusion, occasional misidentified robots, and information loss

during conservative parsing. In simulations with seven robots, we assigned a random subset of visible

neighbors to each robot in each iteration, and compared the effect of the subset size on alignment. In

this case, there was no parsing and no noise on the LEDpositions. The convergence of robot headings

was accelerated if more than 2.2 neighbors were visible; conversely, it slowed down and almost dou-

bled if one single neighbor was visible only (Fig. 6.6 B). The final circular standard deviation σφ was

unaffected by the number of visible neighbors. As with schooling fish that exhibit group-level coordi-

nation, a limited48,92 and noisy126 count of neighbors was sufficient to achieve alignment consensus

in our experiments.

6.3.3 Cognition speed

Faster cognition—achievablewithmorepowerful hardware ormoreperformant algorithms—allows

formore frequent sensing, which generally results inmore accurate state estimation and control. Blue-

bots’ cognition speed is most severely affected by the complexity of image processing. Average sensing

iteration frequencies of 3.42Hzweremeasured during alignment only, and dropped to 0.96Hzwhen

predator detection was added. Simulations with seven robots showed that the quality of alignment

deteriorates for frequencies below 1Hz (Fig. 6.6 C). This prevented us from using a previously devel-

oped127 and bioinspired125 flashing mechanism to warn fellow Bluebots against the predator; while

effective for predator alert, flash detection slowed down and damaged alignment significantly.
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Figure 6.8: Scalability of alignment. Convergence of headings takes longer and settles at higher circular standard deviations
σφ with an increasing number of robots. All data points were averaged acrossN = 10 simulation runs.

6.3.4 Number of robots

We simulated alignment with 5–50 robots to assess whether our implementation scales well to larger

collectives. Perception and cognition of these simulated robots matched the Bluebots. For headings,

the convergence time grew and the final circular standard deviation σφ deteriorated with the number

of robots (Fig. 6.8). This confirms our expectation that with more robots, occlusions become more

frequent and inferring individual headings more challenging. As a result, small alignment errors add

up from one end of the collective to another.

6.3.5 Escape angle

The fountain maneuver takes up more space with larger escape angles (Fig. 6.9 A); an angle of |60 ◦|

was chosen for physical experiments due to space constraints in our testing environment. In compar-

ison, the same maneuver with Θ = |150 ◦| — the rear limit of the visual field of gadoid fish117 —

requires nearly ten times as much space (compare Figures 6.9 B and 6.3 B). Simulated robots were

able to reach and hold larger escape angles more easily.
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Figure 6.9: Escape angles. (A) The larger the escape angleΘ, the longer are the escape trajectories (colored). The predator
moves from bottom to top and is indicated by the vertical line on the left (greyscale). (B) A fountain maneuver with six
simulated robots and an escape angle of |150 ◦|.
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7
Toward OpenWater Swarming

Coming soon, because major parts of this chapter yet have to be published in a journal/conference

paper.
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8
Conclusion

Self-organized collective behaviors without external assistance are hard to engineer, espe-

cially in 3D space which puts high requirements on autonomous perception andmaneuverability. To

complicate matters further, many existing above-ground sensing and explicit communication meth-

ods are unavailable underwater. As a consequence, capable underwater robot collectives that demon-

strate dynamic decentralized coordination are missing in the literature. By contrast, schooling fish
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that use vision as their dominant sensory modality53 display mesmerizing underwater coordination

at scale, and inspired us to design a novel underwater robot swarm that can self-organize with local

implicit vision-based coordination only.

8.1 Achievements

Blueswarm marks a major milestone in the experimental investigation of self-organized collective be-

haviors in 3D space. This work on the design and strong experimental validation of autonomous

underwater robots with 3D perception and 3D locomotion represents the first example of fully de-

centralized 3D underwater coordination in the field of robotics.

The miniature underwater robots use only local and implicit coordination mediated through blue

light. The Bluebot cameras paired with the LEDs result in a minimalist but versatile visual system

that is used to rapidly infer the positions of neighboring robots but also enables synchronization and

signaling. The fish-inspired body design with multiple fins offers a high degree of maneuverability at

a low footprint to allow for fast response to neighbor actions or precise maneuvers in more complex

environments.

Blueswarm shows that a range of complex and dynamic 3D collective behaviors — firefly-inspired

synchrony, molecular aggregation-dispersion, dynamic circle formation, search-capture, evasive foun-

tain maneuvers — can be achieved by sensing minimal, noisy impressions of neighbors, without any

centralized intervention. To the best of my knowledge, this is the first significant demonstration of

self-organized 3D collective coordination underwater, without any external sensing and control assis-

tance.

The results illustrate the power of decentralized autonomy, and provide new insights into the role

of implicit coordination as a keymechanism for achieving coordination in challenging environments.

Thisworkprovides for thefirst time strong experimental evidence formultiple complex and robust 3D
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underwater collective behaviors, achievable entirely through self-organized coordination. It advances

the potential for future underwater robots that display collective capabilities on par with fish schools

for applications such as environmental monitoring in coral reefs and large-scale search operations. In

addition, Bluebots are also well-suited as an experimental test bed for investigating natural collective

behaviors and biomimicry, for example studying energy savings for different formations in schooling

fish, or collective predator behaviors exhibited by wolf packs or dolphins1,7,27.

8.2 FutureWork

While the Blueswarm platform is currently limited to a laboratory setting, the introduction of pro-

gressively more powerful and smaller microcomputers, underwater cameras, and new actuators will

enable such robots in more complex natural environments36,39. Future camera-equipped miniature

underwater robots may additionally record videos and take images, for instance to inspect coral reefs

or man-made underwater structures. Instead of LEDs or simple colors, such robots may use deep-

learning generated visual patterns (i.e., “artificial” schooling marks) to recognize neighbor pose67 and

navigate underwater.

Insights from real-robot underwater experiments will contribute toward future unsupervised ver-

sions of coordinated maneuvers of unmanned vehicles, making it possible to combine multiple robot

modalities (aerial, water-surface, and underwater) to achieve scalable and robust realizations of ven-

tures such as collective search of missing aircrafts, vessels, and persons in water16. To realize these

ventures, I prioritize future work in the following three key areas:

1. Collective mapping, sampling, and localization in unknown environments

Vast parts of our oceans are still relatively unexplored. Other parts are endangered for a variety

of reasons including overfishing, pollution, and the effects of climate change. Blueswarm can

help in stepping up conservation efforts to protect important and fragile underwater habitats

99



Figure 8.1: Navigating unknown territory. A robot extracts key features from a current image (left) and matches them
against a pre‐generated map (right) in order to localize itself.

like coral reefs. Small, agile, and innocuous robots inspired by Bluebot can inform such efforts

by gathering relevant data to better understand the state of an ecosystem.

The envisioned approach will make use of existing methods such as structure from motion

(SfM)128–130 and visual odometry131,132, and gear them toward running fast on microcom-

puters onboard of autonomous underwater robots. In order to map new environments, a

swarm of robots will first take a large amount of images. With SfM applied to this image set,

the environment can be reconstructed offline and represented as a 3D map even if the loca-

tions where the images were taken are unknown133. Key features will then be extracted from

the images and linked to their corresponding locations in the 3D map. Back in the water, a

robot can now extract features from fresh images and match them against the pre-generated

feature map to localize itself. We already demonstrated successful feature matching in prelim-

inary experiments in air (Fig. 8.1).

2. Complex behaviors with heterogeneous swarms

Many open water tasks will be of high complexity and require collectives that master a variety

of challenges. An interesting approach that was successfully demonstrated above-ground33
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are heterogeneous systems with several complementary robots that fulfill specific roles and are

specialized in particular tasks. In addition, such robots might sporadically communicate ex-

plicitly to exchange information coming from different sensors. Bluebots already carry an on-

board radio with a communication range of at least 20 body lengths underwater that can be

used to develop explicit communication.

3. Blueswarm as an open-source platform

I designed Bluebots to be easy to use, not only bymyself, but also by other researchers. Collab-

orations onmilling, search, and evasive maneuvers showed that postdocs and students can op-

erate Bluebots without lengthy introductions. In order to launch Bluebot as an open-source

platform — our group did that previously with the Kilobot10 — the hardware design and

software starter package will have to be further optimized to be easy to fabricate and handle,

durable, and reliable. Such open-source platform will give researchers a much-needed tool to

systematically investigate self-organized 3D collective behaviors in the laboratory.

In addition to studying collective behaviors, the Blueswarm platform lends itself for biomimicry

and the development of soft propulsors. In a first collaboration, I looked at nature to refine a Blue-

bot variant — the Finbot — such that it accurately mimics three key characteristics of fish swim-

ming: i) linear speed-frequency relationships, ii) U-shapedCoT, and iii) reverse Kármánwakes75 (Ap-

pendix B). Finbot then served as a fish-surrogate to experimentally validate a novel hypothesis on the

energy savings of in-line schooling57. Originating from bioinspired design ideas, biomimetic robots

can in turn be useful tools (e.g., in evolutionary and comparative biology) to explore and reflect on

animal physiology and behavior.

In a second collaboration, I demonstrated soft, muscle-like actuators on a Bluebot variant134 (Ap-

pendix C). Thanks to recent advances in materials and fabrication processes, soft propulsion can be

combined with soft bodies to create entirely soft and autonomous robots135. A future challenge will
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be to reduce the complexity and increase the durability of soft designs, such that many small robots

can be manufactured reliably.

8.3 The Importance of Understanding Collective Behaviors at Large

Collective behaviors emerge not only in fish schools, bird flocks, or ant colonies1, but also in human

social dynamics ranging from information spread on social networks136 to trading activities inmarket

places137. Collectives can solveproblems thatmaybe insurmountable for any individualmember, cap-

italizing on shared information and coordinated actions2,3,138. In human societies, we all contribute

to andbenefit fromcollectivewelfare byorganizingpolitical and economic institutions, tackling global

challenges such as climate change or disease spread, and changing social norms for the better139–141.

Understanding collective behaviors allowsus to create andmaintain stable social systems, and engineer

novel solutions for hitherto complex and vast problems.

The research field of collective robotics draws inspiration from natural systems and aims to engi-

neer their attractive properties into de novo artificial systems8. Such work has far-reaching impacts

on human society. The reliability of large-scale infrastructure systems (e.g., traffic, finance, or elec-

tric power) is of growing importance in a globally connected as well as increasingly automated and

accelerated world. Failures of such systems may critically affect millions of people. Decentralized and

self-organized designs can improve the robustness of largely autonomous systems while also increas-

ing their scalability; such systems become more redundant and less vulnerable to human error and

malicious attacks. In addition, self-organized systems may enable new ventures, which are currently

unfeasible due to impaired real-time communication with, or the safety of, human operators. For in-

stance, teams of robots couldprovide shelter andharvest energy ondistant planets longbefore humans

arrive, or speed up search and rescuemissions in hazardous areas here on earth. More immediately, the

insights from research on collective robotics are expected to have a direct impact on the organization
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and coordination of large automated systems, spanning from automated warehouses and self-driving

cars to high-frequency trading and smart communication and power grids.
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A
Main Supplement

A.1 Rapid LED Blob Detection

A Bluebot detects the presence of fellow robots by locating their LEDs on its vision system. The

Bluebot’s camera settings (e.g., brightness and contrast) are set such that under laboratory experiment

conditions, everything in the images appears dark except for the LEDs of other Bluebots, which are

the brightest light sources in the environment. These settings facilitate the process of detecting LEDs
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Algorithm 6:Rapid LED blob detection (RapidLED)
1 Input: a binary image inm× nmatrix format with only black and white pixels
2 Store all white pixels in a list, recording theirmn coordinates.
3 Sort the list of white pixels bym coordinate.
4 Split this sorted list into sub-lists wherever there is a gap larger than L between

successivem coordinates.
5 for list in sub-lists do
6 Sort the pixels by n coordinate.
7 Split this sorted list into sub-lists wherever there is a gap larger than L between

successive n coordinates.
8 Each sub-list now corresponds to an LED blob. Calculate its centroid and add it to

the list of blob centroids.
9 return the list of blob centroids

from other Bluebots, because they appear as more or less circular blobs in the image. The process of

detecting contiguous sets of pixels in an image is often referred to as blob detection; in order to achieve

fast processing times, I designed a simple custom algorithm (Alg. 6).

The blob detection process starts by thresholding the image to obtain a binary image with only

black and white pixels. The threshold is set heuristically to achieve a balance between sensing range

and sensitivity to false-positive errors. I define blobs as continuous regions of white pixels in a binary

image. The notion of continuity depends on how neighbor pixels are defined. Common definitions

include 4-connectivity and 8-connectivity. I use the definition that two pixels are connected if their

Moore distance is smaller than or equal to two. This allows for gaps of size one pixel within a blob.

Many algorithms exist for blob detection. A simple but effective method is to search for blobs via a

depth- or breadth-first search (DFS, BFS) starting from every unvisited white pixel. This method will

correctly identify all blobs in every case, and require O(3mn) steps, wheremn is the number of pixels

in the image. However, the Raspberry Pi ZeroW’s limited computational power renders this method

too slow to be useful for real-time control on the Bluebots, even at the reduced image resolution of

192× 256 pixels.
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Figure A.1: Correctness of rapid LED blob detection for three different cases. (A) Non‐pathological: All four blobs can be
detected and their individual red centroids will be returned. (B) Solvable pathological: Blobs a and c could be separated
with a second pass of LED blob detection. (C)Non‐solvable pathological: Blobs a and bwill always be mistakenly returned
as a single blob. This case, however, is highly unlikely for circular LED blobs.

I therefore opt for a trade-off with an algorithm that runs an order of magnitude faster than DFS

and BFS, but is not guaranteed to identify all blobs in every case. In practice, successful experiments

demonstrate that this detection system is sufficient. The algorithm is based on identifying continuous

pixels first in one direction and then in the other, and inherently considers pixels to be connected or

not according to their Moore distance. I introduce a parameter L that defines the maximumMoore

distance for two pixels to be considered connected. Setting L = 1 reduces to 8-connectivity and

increasing L allows for some black pixels within white blobs.

A.1.1 Correctness

In the following analyses, I assume L = 1 for simplicity. Figure A.1 A shows a non-pathological case

for the blob detection algorithm (Alg. 6). In step 4, blob d is isolated, but blobs a, b, and c are grouped

together because their vertical m coordinates overlap. Blobs a, b, and c are then separated in step 7,

because their horizontal n coordinates are not continuous.

Figure A.1 B shows the first pathological case for the blob detection algorithm. In the vertical m

coordinate pass of step 4, all three blobs are added to the same sub-list because their m coordinates

are continuous. In step 7, blob b is isolated, but blobs a and c remain lumped together because their

horizontal n coordinates are continuous. This pathological case can be solved by recursively calling
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Figure A.2: Time complexity of rapid LED blob detection at an image resolution of 192× 256. (A) A typical image taken
with a Bluebot during aggregation with seven robots, which contains 0.35% white pixels. (B) Rapid LED blob detection
(RapidLED) is significantly faster than depth‐first search for low ratios of white LED blob pixels in a given image. The ratio
of white pixels in Bluebot images typically falls into the yellow left region. RapidLED would process example image (A)
with approximately 2.9 fewer computational steps than DFS.

the algorithm on all sub-lists after step 7: once blob b is removed, blobs a and c are distinguished by

another pass of the algorithm. In general, the algorithm would have to be called recursively when-

ever any splits are made in step 7. I opted not to use this recursion in my implementation, because it

slowed down the algorithm significantly and did not provide a substantial benefit in practice. Even if

recursion is used, there are still some pathological cases that cannot be resolved by this algorithm, as

shown in Figure A.1 C. These two blobs will always be identified as one because they are continuous

in bothm and n coordinates. Given the circular nature of the LEDs, pathological cases were a non-

issue in experiments. Conversely, there are many more sources of error and noise, e.g., reflections and

occlusions, that play a more significant role in reducing the accuracy of neighbor detection.

A.1.2 Time Complexity

Depth-first search (DFS) visits every node and edge in a graph exactly once. Here, an image has mn

nodes (pixels), and (m − 1)n + m(n − 1) edges (links between adjacent pixels). The resulting time

complexity of DFS is O(3mn), regardless of how many white LED blob pixels there are in any given

image.
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Rapid LEDblob detection (RapidLED) also visits allmn pixels once to identify white pixels above

a heuristically tuned threshold (step 2 inAlg. 6). Let’s denote the ratio of white pixels in an image asw

(e.g., an imagewithw = 0.005 contains 0.5%white pixels). For each of steps 3 and 6 inAlgorithm 6,

RapidLED has to sort at most wmn pixels in total, and sorting takes time O(wmn log(wmn)). The

resulting time complexity of RapidLED is O(mn + 2wmn log(wmn)), and depends on the ratio of

white pixels in any given image.

Figure A.2 B shows the number of computational steps required for different ratios of white pixels

for a Bluebot image of size 192× 256. As long as there are fewer than 11.6%white pixels, RapidLED

requires fewer steps than DFS. Typical Bluebot images have less than 1% white pixels (yellow left

region), and are processed significantly more efficiently with RapidLED (e.g., 2.9 times fewer com-

putational steps for a typical image as shown in Figure A.2 A). The mean and standard deviation of

white pixels taken from 453 images over the course of a representative aggregation-dispersion experi-

ment were μ = 0.27% and σ = 0.26%, respectively. At most, there were 1.86% white pixels in an

image showing a very nearby robot, and only 14 images out of 453 had more than 1%white pixels.

A.2 3D Tracking of Laboratory Blueswarm Experiments

A custom tracking system allows for each Bluebot’s individual 3D trajectory to be fully tracked in

experiments with multiple Bluebots. The tracking system works by combining video data from an

overhead camera with depth measurements from each Bluebot’s pressure sensor. The overhead cam-

era is a Canon Rebel T5i equipped with a Sigma 35mm f/1.4 DG HSM Art Lens. This lens pro-

vides a sufficiently wide angle to cover the entire 1.78m× 1.78m tank area with negligible distortion.

The Bluebot’s pressure sensor (TE connectivityMS5803-02BA) provides sub-millimeter precision in

depth measurements. The tracking software is written in MATLAB.

108



A.2.1 Experimental Protocol

After an experiment, each Bluebot’s pressure sensor log file is downloaded to a computer via a secure

shell (SSH). The video from the overhead camera is downloaded to the same computer via a USB

connection.

It is necessary to synchronize the time stamps from the pressure sensor log files with the time of the

video. This is achieved by the following protocol:

a) At the start of an experiment, the Bluebots are placed at the surface of the tank in the desired

configuration and are put into a waiting state, in which they continuously sample the reading

of their photodiode (VTP1112H) and wait for a light-to-dark transition in the environment.

b) Recording on the overhead camera is started.

c) The laboratory lights are turned off, which simultaneously signals all Bluebots to transition to

the initialization state and start periodically logging their pressure sensor datawith time stamps

beginning at zero.

d) In post-processing, the time in the video at which the light-to-dark transition occurs is used as

the synchronization point for the pressure sensor data.

Apart from temporal synchronization, it is critical to spatially match each pressure sensor log file

with its originating robot in the overhead video. This is achieved by the following protocol:

a) After a short period (~1 s) from the light-to-dark transition, each Bluebot flashes its LEDs a

unique number of times, as given by its identifier (ID). Bluebots with lower IDs wait until the

Bluebot with the highest ID is finished flashing before transitioning to the experiment state.

This way, all Bluebots start executing the experiment code simultaneously.
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b) In post-processing, the tracking software automatically detects the number of flashes for each

Bluebot, and this information is used to assign pressure sensor log files to the robots in the

starting frame.

A.2.2 Multi-robot Tracking

Tracking proceeds in five phases: i) initialization; ii) 2D position identification; iii) 2D trajectory iso-

lation; iv) 3D data fusion; v) post-processing. In the initialization phase, the pressure sensor data is

temporally and spatially synchronized with the video data as explained in the previous section. The

video is trimmed to start when the Bluebots begin executing the experiment, which occurs shortly

after the Bluebot with the highest ID has finished flashing its LEDs.

In the2Dposition identificationphase, the positions of allNBluebots are identified in each frame

of interest (disregarding identities). Tracking is performed every 0.2 s, or every six frames since the

video is recorded at 30 frames per second (FPS). In each frame of interest (henceforth simply “frame”),

the tracking software attempts to perform position identification automatically, and asks the user for

input if it cannot perform this task unambiguously. The automated attempt proceeds as follows and

is repeated for each frame until the end of the video:

a) The image is converted to binary according to a user-specified threshold value. This value can

be heuristically set to improve the chances of successful automatic identification in a given

video. However, decreasing this value too much may result in genuine Bluebots being missed

(false negative detections), while increasing it too much may result in non-existent Bluebots

being identified (false positive detections).

b) White regions smaller than a certain number of pixels are removed using MATLAB’s bwareaopen

function. The number of pixels can be adjusted by the user to optimize performance.
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c) MATLAB’s regionprops function is used to identify connectedwhite regions (blobs), which rep-

resent Bluebots.

d) If more thanN blobs are identified, a correction attempt is made by performing a minimum-

distance bipartite matching with the positions already identified in the previous frame. The

N blobs in the current frame contained in the matching are proposed as the current Bluebot

positions.

e) If fewer thanN blobs are identified, no correction attempt is made, and the result is presented

to the user for correction.

f) Regardless of whether or not a correction has been attempted or not, the result is shown to the

user for correction/verification by plotting each identified position on the original (i.e., non-

binary) frame. If necessary, the user can make adjustments by clicking on existing positions to

remove them and clicking anywhere else in the frame to add a new position. When the user is

satisfied with the result, they press Enter to proceed to the next frame. The tracking software

will not proceed to the next frame until exactly N positions have been identified. Moreover,

the tracking software performs aminimum-distance bipartite matching between the positions

in the current frame and the previous frame and warns the user if the sum of distances is larger

than a threshold value. This value is set according to themaximumdistance that a Bluebot can

move between successive frames.

We nowhave a set ofNBluebot positions per frame, but these positions are not correlated between

frames; i.e., for any specific Bluebot in some frame, it is not known which position corresponds that

Bluebot in the following frame(s). The 2D trajectory isolation phase addresses this issue, which is

important for two reasons:
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i) Extracting the trajectories of individual Bluebots, rather than simply uncorrelated positions,

is useful data that can help in analyzing experimental outcomes.

ii) Since pressure sensor data is used for extracting the vertical dimension of the Bluebot’s posi-

tion, it is critical to know the identity of each Bluebot throughout the video. Note that the

2D positions obtained from tracking the video are not a faithful representation of the Bluebot

positions, even if one is only interested in the horizontal plane and not in the vertical dimen-

sion. This is because every point in the 2D frame corresponds to a non-vertical set of possible

positions in 3D space. The depth must be known for resolving this set of possible positions to

a single one, as shown in Figure A.3.

Trajectory isolation is performed by traversing the entire video for each robot, one by one. Given

the position of the Bluebot in Frame k (starting at Frame 1), a new position is searched for in Frame

k+ 1 within a fixed radius of the previous position. If exactly one new position is found, this becomes

the current position and the tracking software automatically proceeds to the next frame. If no new

position is found, ormultiple candidate newposition are found, the user is shown all the available new

positions and asked to select the correct one. When anewposition is identified (whether automatically

or by the user), it is marked as “used”, and may not be assigned to any subsequent Bluebot. This

step makes the trajectory isolation increasingly automated for successive Bluebots, because there is

less potential for conflicting new positions.

The search radius can be adjusted by the user but should roughly correspond to the maximum

distance that a Bluebot can be expected to move between successive frames. Too small a radius results

in a higher risk of no new position being identified, while too large a value will result in a higher risk

of multiple candidate new positions being identified.

As explained above, the 2D trajectories obtained so far are not a faithful representation of the Blue-

bots’ movements, even if one is interested only in the horizontal plane. In the 3D data fusion phase,
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Figure A.3: 3D tracking — side view. Schematic side view of the tank showing the overhead camera and the salient
parameters. Note that all the dimensions are shown as if they are projected onto a flat surface; in reality, they are 3‐
dimensional (cf. Fig. A.4).

these 2D trajectories are fusedwith the Bluebots’ pressure sensor data to obtain 3D trajectories. Recall

that spatial and temporal synchronization between the video and pressure sensor data was achieved in

phase 1. As such, for every p̂ki (2D position of Bluebot i in Frame k), we now have a corresponding dki

(depth of Bluebot i in Frame k). The fusion proceeds Bluebot by Bluebot and frame by frame. In the

following, we assume a general pair p̂ki and dki and drop the sub- and superscripts to simplify notation.

Note that p̂ = (m, n) is referenced from the center of the image with the conventional axis directions,

while d is referenced from the water surface pointing downwards (see Fig. A.3).

Given p̂ = (m, n) and d, we wish to find the 3D position of the Bluebot in the tank. The origin is

taken to be the center of the tank at thewater surface, with the z-axis pointing downwards. Therefore,

the Bluebot’s 3D position takes the form p = (x, y, d), and the problem reduces to finding x and y in
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Figure A.4: 3D tracking — overhead view. Schematic of the tank view as seen from the overhead camera. The square with
red corners corresponds to the water surface, while the square with green corners corresponds to the bottom of the tank.
The image coordinate system has its origin at the center of the tank with the m and n axes pointing right and upwards,
respectively. Distances in this coordinate system are measured in pixels. The distance from the Bluebot to the origin in
this overhead image is denoted by ρ.

terms ofm and n. To solve this problem, we must make a number of measurements in the image and

in the real world.

Before data fusion begins, the user is presented with a frame from the video and is asked to click on

eight points; namely, the four corners of water surface and the four corners of the bottom of the tank.

These points are shown in Figure A.4 in red and green, respectively. From these points, the tracking

software automatically computes the average image distance (in pixels) from the center of the tank to

the corners of the water surface (ρ1) and to the corners of the bottom of the tank (ρ2).

As shown in FigureA.3, let c represent the horizontal cross-sectional distance from the center of the

tank to one of its corners and w the water depth. These values are known from direct measurement.

Furthermore, let f represent the focal distance and h the distance from the focal point to the water

surface. These values are harder to measure directly since the exact focal point is unknown, so we
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calculate them from the above known values. From Figure A.3, observe from similarity of triangles

that:

f
ρ1

=
h+ w

c
and

f
ρ2

=
h
c
,

from which we compute:

f =
wρ1ρ2
ρ2 − ρ1

h =
wcρ1

ρ2 − ρ1
.

Given a Bluebot’s 2D position p = (m, n) and depth d, we define the 2D distance of the Bluebot

from the center of the image as:

ρ =
√
m2 + n2,

(see Fig. A.4) and from observation of Figure A.3 we can calculate the horizontal cross-sectional

distance of the Bluebot from the center of the tank, r:

r =
ρ(h+ d)

f
.

We now scalem and n by a factor rρ to obtain x and y:

x =
r
p
m

y =
r
p
n.

and we have the final, 3D position of the Bluebot in the tank:
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p = (x, y, d).

Thepost-processingphase consists of a simple exponentialmoving average filter that reduces noise

in the Bluebot positions due to tracking errors (e.g., inaccurate user clicks, noise on the pressure sen-

sor). Denoting the unfiltered position of Bluebot i at Frame k as pki , we obtain the filtered version p̃ki

by applying:

p̃1i = p1i

p̃ki = αp̃k−1
i + (1− α)pki k = 2, · · · ,K

where K is the number of frames and α is the filter parameter that can be set by the user in the

range [0, 1). Smaller values of α place more emphasis on the measured values (i.e., less filtering), while

higher values placemore emphasis on past measurements. As a guideline, α should be set such that no

spikes in the filtered data occur that are beyond the dynamic capabilities of the robot (due to inertia,

hydrodynamic drag, and actuator placement and power limitations). We use a value of α = 0.7 in all

cases.

A.3 Dynamic Circle Formation andMilling

The dynamic circle formation andmilling algorithm places strikingly few requirements on the part of

the robots. It is only assumed that:

• Each robot has a line-of-sight or a field-of-view binary sensor that can detect the presence of

other robots. The sensor returns 0 if it does not detect other robots and 1 if it does. The robot

does not need to know the number or exact positions of robots within the field-of-view, thus
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placing very little load on the image processing and working with minimal information.

• The robots are capable of moving in a planar circle of a fixed radius at a fixed speed in either

direction (i.e., clockwise or counterclockwise). For dynamic cylinder formation, we also as-

sume that robots can independently control their depth in the tank while moving clockwise

or counterclockwise in the plane.

The algorithm itself is also extremely simple. Each robot follows the following protocol:

• If the sensor returns 0, rotate clockwise along a circle of radius r0 with a fixed speed.

• If the sensor returns 1, rotate counterclockwise along a circle of radius r1 with a fixed speed.

Previous work in simulated ground robots suggested that this algorithm generates an emergent

rotating circle formation, where ideal robots (with no sensory or locomotion noise) are equally dis-

tributed along the circle and the size of the circle increases with the number of the robots.

Here we prove that the original algorithm for simulated ground robots with line-of-sight sensors

has a unique stable state with a circle radiusR, whose formula is derived, and we also provide bounds

on necessary parameters to achieve a stable configuration. We then extend this proof to the Bluebots,

which use an angular field-of-view sensor.

In the following analysis, we make several simplifications:

• The sensor-actuator loop is fast enough that it can be considered continuous.

• There is no noise on the robots’ sensor readings and locomotion.

• The robots have no inertia and can change directions (i.e., from rotating clockwise to coun-

terclockwise or vice versa) instantaneously. This simplification does not hold strongly for the

Bluebots, but it makes the analysis tractable, and simulation and physical results show that

milling with the Bluebots is indeed possible.
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• The robots are on the same horizontal plane. This simplification leads to no loss of generality

as long as the robots’ sensors are implemented in such a way that they are invariant to other

robots’ altitudes/depths.

A.3.1 Overview of Theoretical Results

In this section we introduce the main parameters and present a short overview of the theorems and

insights that will follow in more detail in the subsequent sections.

We are given a number of robotsN and assume that the robots have an approximately circular body

of radius ρ (for the purposes of being sensed by other robots). We begin by considering line-of-sight

sensors, which will then easily extend to the more general case of field-of-view sensors.

GivenN and ρ, we show that there is a unique stable milling configuration with radius:

R =
ρ

1− cos 2π
N
,

provided certain conditions are satisfied, namely:

• The robots’ turning radius when the sensor reports no other robots, r0, must be smaller than

or equal to the milling radius: r0 ≤ R. Milling is smoother if the two values are similar, i.e., if

r0 is not much smaller thanR.

• The robots’ sensors must have sufficient range, and a lower-bound on this sensing range is

theoretically calculated.

We then generalize the above results to the case of a field-of-view sensor. The sensor’s half field of

view is denoted by α. The line-of-sight sensor results are all recoverable from the field-of-view sensor

results by setting α = 0.
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R′ =
ρ

cos α − cos
(2π
N − α

)
For afield-of-view sensor, themilling radiusR′ nowdepends onN, ρ, andα. The same conditions as

for line-of-sight sensors still hold, but the lower boundon the required sensing range nowalso depends

on α. Additionally, there is also a theoretically calculated upper bound on α to achieve a finite steady-

state milling radius. For values of α larger than this upper bound, the milling radius grows until the

robots can no longer see each other (or indefinitely if the sensing range is unlimited).

In the following subsections, we provide proofs for each of the claims made above.

A.3.2 Millingwith Line-of-Sight Sensors

Steady-State Circle Formation andMilling Radius

The first theorem shows that a milling formation can be maintained if robots start from an idealized

configuration and an optimal r0 is chosen.

Theorem A.3.1. Given a free choice of r0, N robots of radius ρ can be placed on the vertices of a regular

N-sided polygon such that upon moving, no robot detects another robot, and the polygon formation is

maintained indefinitely. The radius of this polygon is:

R =
ρ

1− cos 2π
N
,

and we choose r0 = R.

Proof. Consider the configuration in Figure A.5 A, where N robots are placed on the vertices of a

regularN-sided polygon and each robot is oriented such that its sensor is tangential to the subsequent

robot. In this configuration, no robot detects another robot. Now, if the robots rotate clockwise with
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Figure A.5: Steady‐state milling radius. (A) Seven robots arranged in a regular polygonal formation with line‐of‐sight
sensors tangential to each other. (B) Expanded view of the red quadrilateral.

the same radius as the radius of the polygon (i.e., r0 = R, as shown by the dotted circle), we have the

invariant property that no robot will ever see another robot as they move. It remains to calculate the

radius of the polygon,R.

Figure A.5 B shows an expanded view of the red quadrilateral in Figure A.5 A. Since the polygon

is regular, the angle spanning from the center of the polygon to any two adjacent robots is given by

Θ = 2π/N. Observe from the triangle in Figure A.5 A that:

cos
2π
N

=
R− ρ
R

,

which can be rearranged to give:

R =
ρ

1− cos 2π
N

■

120



Unique Steady-State Configuration

We do not know of a method to prove or guarantee the convergence to the milling formation starting

from an arbitrary initial configuration of robots. However, assuming an unlimited sensing range and

r0 = R, it is easy to show that the milling formation of Figure A.5 A is the only stable formation.

By stable, we mean that no robot will ever see another robot, and therefore the formation will never

change (except for the robots rotating indefinitely).

TheoremA.3.2. The regular polygon formation of TheoremA.3.1 is the unique stable formation if the

sensing range is unlimited and r0 = R.

Proof. In Figure A.6, robot A rotates along a circle of radius r0 = R. For contradiction, assume a

formation not identical to the one of Theorem A.3.1. Then, at least one other robot, say robot B,

does not have its center lying on the circle traversed by robot A. Therefore, robot B traverses a circle

different to the one traversed by robot A. It is clear that as both robots move along their respective

circles, each robot’s sensor must at some point intersect the other robot. Thus, the configuration is

not stable. ■

Previous work’s simulation results and our own MATLAB simulations suggest that the stable milling

formation in Figure A.5 A with the corresponding milling radius is achieved from any initial config-

uration with r0 = R, even though a proof of convergence does not yet exist. Furthermore, these

simulation results suggest that this algorithm works for r0 ≤ R and with sufficient (not just unlim-

ited) sensing range. These two conditions are expanded on in the following two sections.

Effects of r0 and r1 onMilling Formation

Theorems A.3.1 and A.3.2 assume that r0, the turning radius of the robots when their sensor reads 0,

is equal to the milling radiusR. Under this condition, no robot in the formation will ever see another
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Figure A.6: Unique steady‐state circle. Example configuration of two robots to show that the regular polygon formation
of Theorem A.3.1 is the only stable formation.

robot, and the formation is maintained indefinitely. In practice, this is achievable if the number of

robots is known and the turning radius is easily adjustable, but it is not possible if the turning radius

is fixed and the number of robots is unknown or variable.

To examine the effect on r0 on maintaining the formation in Figure A.5 A, consider one of the

robots and consider its position after a short amount of timeΔt. If r0 = R, then the robot’s centerwill

still be on the dotted circle, only shifted slightly clockwise. Moreover, its sensor will still be tangential

to the next robot, and therefore its sensor will still read 0 and it will continue rotating clockwise.

Assume now that r0 < R. The robot’s center after a short period of time Δt will now lie slightly

inside the dotted circle, and as a result, its sensor will now intersect with the next robot, returning a

reading of 1. Consequently, the robot will now rotate counterclockwise with radius r1. This creates

a negative feedback mechanism that, on average, maintains the formation of Figure A.5 A. Naturally,

the closer r0 is toR the more smoothly the formation can bemaintained, but simulation results show

that r0 can be reduced by around an order of magnitude before any noticeable deviations start to

occur, and by around two orders ofmagnitude before the overall formation is seriously compromised.

Simulation results also show that setting r1 = r0 in all cases is a reasonable choice.
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Figure A.7: A pathological initial circle configuration. In the case of r0 > R, the five robots, which do not see each other,
will continue rotating along a circle of radius r0 and never converge to a regular pentagon.

Assume that r0 > R. In this case, we can guarantee that it is not possible to achieve the formation

of Figure A.5 A starting from any initial configuration (but it might be possible starting from some

initial configurations). We state this as a theorem.

Theorem A.3.3. If r0 > R, it cannot be guaranteed that the robots will converge to a regular polygon

of radius R.

Proof. We prove this statement by providing a pathological initial configuration. We only need to

redraw the formation of Figure A.5 A, but withR replaced by r0 and some of the robots removed, as

shown in Figure A.7.

None of the five robots see each other, and therefore they will continue rotating along the circle of

radius r0, never converging to a regular pentagon. ■

The above analysis, coupled with simulation results, suggest that in practice it is advisable to set:
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R
10

< r0 < R

r1 = r0

Lower-bound on the Sensing Range

If r0 = R, the robots in Figure A.5 A will maintain their formation regardless of the sensing range,

because no robot will ever see another robot in any case. However, if r0 < R, then maintaining the

formation relies on the negative feedback effect discussed in the previous section, which in turn relies

on each robot being able to sense the adjacent robot. Therefore, a lower-bound on the sensing range

required to maintain the formation is given by calculating the value of δ in Figure A.5 B. We see that:

δ = R sin
2π
N

,

or, substituting in the expression forR calculated in Theorem A.3.1:

δ =
ρ sin 2π

N
1− cos 2π

N

Note that this is only a lower-bound on the required sensing range and does not say anything about

the ability of robots being able to form themilling formation from any initial configuration. The abil-

ity to form the milling formation depends on the compactness of the initial configuration. We do

not know of any method to guarantee the milling formation based on the sensing range and the ini-

tial configuration, but simulation results suggest that milling is almost always successful if the robots

initially form a strongly-connected graph (with two robots being connected if they are within each

other’s sensing range).
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Figure A.8: Milling with field‐of‐view sensors. (A)A regular polygon configuration with field‐of‐view sensors (cf. Fig. A.5 A
for line‐of‐sight sensors). Only two robots are shown for simplicity; additional robots lie on each vertex of the polygon.
(B) Geometry for calculating the milling radius with field‐of‐view sensors.

A.3.3 Millingwith Field-of-View Sensors

We now generalize the results of the previous section to the case of a field-of-view sensor. In practice,

field-of-view sensors are more straightforward to implement than line-of-sight sensors (strictly speak-

ing, even a column of width 1 pixel corresponds to a field-of view). Moreover, having a field of view

allows us to control the radius of the formation. The only two results that must be modified are the

milling radius in Theorem A.3.1 and the lower-bound on the sensing range.

Recall that we define α as the half field of view of the sensor to obtain simpler equations, but for

brevity we refer to it as the field of view.

Figure A.5must bemodified to account for the field of view. The resulting configuration is shown

in Figure A.8 A (only two robots are shown for simplicity; additional robots lie on each vertex of the

polygon).

Milling Radius

Figure A.8 B shows an expanded view of the red quadrilateral in Figure A.8 A, with additional an-

notations and measurements. The additional measurements follow from the ones in Figure A.8 A

by simple geometrical observations. Note that we have defined Θ = 2π/N to keep the equations
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simpler.

Now, referring to the uppermost triangle in Figure A.8 B, we have:

tan α =
sin α
cos α

=
R− R cosΘ − ρ cos α

R sinΘ + ρ sin α
,

which can be rearranged to give:

R =
ρ

cos α − cosΘ cos α − sinΘ sin α

The denominator can be further simplified via trigonometric identities, and reintroducing Θ =

2π/Nwe finally obtain:

R =
ρ

cos α − cos
(2π
N − α

)
As a check, observe that letting α = 0 in the above equation, we recover the equation for the line-

of-sight sensor given in Theorem A.3.1.

Maximum Field of View

TheoremA.3.4. Themaximumfield of view for achieving a finite-radius, steady-state milling forma-

tion is α = π/N.

Proof. Observe from the above expression for R that the denominator tends to 0 as α → πN from

below, meaning that R → ∞. For α > π/N, we have R < 0. In other words, the expression only

provides admissible (i.e., positive) values forRwhen α ∈ [0, π/N]. ■

The intuitive explanation of this result is that for a given number of robots, if the field of view is set

too large it becomes geometrically impossible to form a finite-radius regular polygon formationwhere

no robot sees another robot.
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Simulation results show that if α > π/N, a regular polygon formation is still formed, but its radius

grows indefinitely. This is because as robots see other robots, they rotate counterclockwise making

the formation larger.

Lower-bound on the Sensing Range

It is straightforward to calculate the lower-bound on the sensing range as we did for the case of line-

of-sight sensors. In particular, we only need to apply the Pythagorean theorem to the upper triangle

in Figure A.8 B to find the length of the hypotenuse γ:

γ =
√
(R− R cosΘ − ρ cos α)2 + (R sinΘ + ρ sin α)2

A.4 Multi-behavior Collective Search

A.4.1 Detection of LED Flashings

During collective search, Bluebots must be able to detect flashing robots and distinguish them from

other Bluebots whose lights are continuously on. The Raspberry Pi camera’s rapid sequence capture

mode, which operates at a rate of up to 60 frames per second, makes it possible in principle to detect

a flashing light up to a rate of 30Hz (by the Nyquist sampling theorem). The underlying idea of flash

detection is to identify blobs in the field of view that alternately appear and disappear at the expected

rate. While straightforward in principle, this process is made challenging in practice by three main

factors:

i) The collective clutters the visual field of each robot. Lights from the same or separate robots

may appear close to each other or overlap, especially at the extremes of the visual field. A light

that is intermittently merging and unmerging with another one, due to noise, may trigger an
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Algorithm 7: Flashing LED detection (FlashLED)
1 Input: a list ofN = 30 binary images inm× nmatrix format with only black and

white pixels (captured in burst mode within 0.5 s)
2 Blob detection: RunRapid LED blob detection (RapidLED, Alg. 6) on each image.
3 Outlier detection: Outliers (might) correspond to an LED that was on in a given

image and turned off in the subsequent image, signifying a flash.
4 for each pair of successive images k and k+ 1 do
5 Sort pairs of blobs from images k and k+ 1 by their distance.
6 Match pairs that are closer than a threshold distance (in pixels).
7 Designate remaining blobs in image k as outliers for image k, i.e., blobs in image k

that have no counterpart in image k+ 1.
8 Streak detection: A streak corresponds to a flashing light that might be moving

while the burst sequence is taken, manifested as outliers that appear in multiple
images such that successive appearances are not separated by more than some
threshold distance.

9 Initialize the set of streaks to the empty set.
10 for each image do
11 for outliers in given image do
12 Given current outlier, search match in the set of streaks:
13 if outlier is within a threshold distance of the last outlier that was added to a

given streak then
14 Declare match, add outlier to given streak.
15 else
16 Start a new streak with the given outlier.

17 return the longest streak, which corresponds to a flashing robot if longer than some
fixed threshold
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incorrect flash detection. This phenomenon makes it challenging to detect one or a few flash-

ing robots among several more non-flashing ones reliably.

ii) While the capture sequence is in progress, both the image-taking robot and the robots in its

visual field may bemoving. As a result, lights do not, in general, appear at the same location in

successive images.

• To the image-taking robot, the movement of other robots is unpredictable. Moreover,

the effect of this movement on the locations of lights in the images depends on the dis-

tances to these robots, which may be unknown.

• In principle, odometry can compensate for the movement of the image-taking robot

itself. In practice, however, the feasibility of this strategy is severely limited for two rea-

sons: i) the noisy nature of the fin-based actuation modality, and ii) undetectable influ-

ences from other robots, in the form of hydrodynamic interference or physical impacts.

All forms ofmotion by the image-taking robot cause lights in successive images tomove,

but yawing is especially disruptive as it causes all lights to move significantly, regardless

of distance.

iii) An inherent trade-off for the robot’s quasi-omnidirectional field-of-view is that objects appear

small even when they are close. This limitation becomes exacerbated when using a limited

picture resolution for faster computational processing. At our default resolution of 192×256

pixels, a robot starts to perceive another robot’s light as only one pixel at a modest distance

of around 10 body lengths (but the range of perception is significantly longer: up to around

30 body lengths). If we use a simple thresholding protocol for deciding which pixels are on

or off, a light that is at the critical distance may be perceived to move in and out of the frame

rapidly, due to noise. This phenomenon is highly prone tomisclassification as flashing, leading
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to false-positive errors.

To address the challenges above we use an algorithm (FlashLED, see Alg. 7) that is robust against

false positive errors while being sufficiently sensitive to detect true flashing. In each control cycle, the

algorithm is run once for each camera. All the threshold values were tuned empirically.

A.4.2 Expected Search Time for a Single Robot— Proof

I approximate the expected time for source detection if Bluebots do not collaborate with a random

walk on an undirected graphG. The vertices ofG are the integers 0, · · · , n and represent distance to

the source; consecutive vertices are connected. I calculate the expected number of steps hj to reach the

target node n (the source) when starting from initial node j. I reach the source at vertex n, so hn = 0;

I can only move closer to the source from vertex 0, so h0 = h1 + 1. For all intermediate vertices

1 ≤ j ≤ n − 1, I use linearity of expectations to find hj. I introduce Zj, a random variable for the

number of steps to reach n starting from j. For a randomwalk, Zj = Zj−1 + 1 and Zj = Zj+1 + 1 are

equally likely with probability 1/2 each. Hence:

E[Zj] = E
[
1
2
(Zj−1 + 1) +

1
2
(Zj+1 + 1)

]
,

where E[Zj] = hj and by linearity of expectations, hj = hj−1/2 + hj+1/2 + 1. This gives me the

following system of equations:

hn = 0,

hj =
hj−1

2
+

hj+1

2
+ 1 ∀1 ≤ j ≤ n− 1,

h0 = h1 + 1,
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for which I can easily verify that hj = n2 − j2 is the correct solution. Since the system has exactly

n+ 1 linearly independent equations and n+ 1 unknowns, this solution is also unique.
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B
OnRobotics and Fish Swimming

Fish are excellent swimmers, navigating cluttered environments such as coral reefs in search of

food, migrating long distances in the ocean, or swimming up rivers to reproduce. In doing so, fish

combine a high degree ofmaneuverability with effective long-distance swimming, a combination that

is highly attractive from an engineering perspective. Fish can achieve this level of performance in part

by using multiple fins to vector forces in three dimensions, supported by sensory systems for closed-
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Figure B.1: Finbot: An autonomous and biomimetic experimental platform. (A) Finbot was designed to enable fish‐like
autonomous swimming. Four independently controllable flexible fins enable precise maneuvers in 3D space (x, y, z cor‐
responding to surge, sway, heave). The caudal fin connects magnetically to the main body and can be exchanged easily
to alter swimming speed and cost of transport. (B) The rigid and streamlined body is inspired in shape by fish such as the
blue tang (depicted top right, credit: by DerHans04, used under CC BY‐SA 3.0; mirrored, rotated, cropped). Finbot swims
autonomously in 3D, using an inertial sensor (IMU) to control heading and a pressure sensor to control depth, and can
monitor its own power consumption. (C) Tail beat amplitude A was tuned to approximately 20% of the body length L
(including fin) according to the observed value among a diverse species of fish142. (D) Finbot in a laser light imaging with
particle image velocimetry, which was used to visualize wake structures. (E) A trailing wake behind Finbot; several wakes
were similar to reverse Kármán streets, which are characteristic of fish swimming.

loop control of fin kinematics.

In amultidisciplinary collaborationwith experts onfish swimming andfluiddynamics spearheaded

by George Lauder andMehdi Saadat, we demonstrated fish-like swimming including properties such

as U-shaped costs of transport and reverse Kármán wakes with a custom, more biomimetic version

of our underwater robots named Finbot (Fig. B.1). We then used Finbot as a fish surrogate to experi-

mentally validate a new thrust-based hypothesis on the hydrodynamic advantages of in-line schooling.

In the following, the abstracts of the two publications coming out of this collaboration are

reprinted. Details are found in the full manuscripts.
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B.1 Fish-like Three-dimensional Swimming with an Autonomous, Multi-

fin, and Biomimetic Robot

Fish migrate across considerable distances and exhibit remarkable agility to avoid predators and feed.

Fish swimming performance andmaneuverability remain unparalleledwhen compared to robotic sys-

tems, partly because previous work has focused on robots and flapping foil systems that are either big

and complex, or tethered to external actuators and power sources. By contrast, we present a robot

— the Finbot — that combines high degrees of autonomy, maneuverability, and biomimicry with

miniature size (160 cm3). Thus, it is well-suited for controlled three-dimensional experiments on fish

swimming in confined laboratory test beds. Finbot uses four independently controllable fins and sen-

sory feedback for precise closed-loop underwater locomotion. Different caudal fins can be attached

magnetically to reconfigure Finbot for swimming at top speed (122mm/s ≡ 1 BL/s) or minimal cost

of transport (CoT= 8.2) at Strouhal numbers as low as 0.53. We conducted more than 150 exper-

iments with 12 different caudal fins to measure three key characteristics of swimming fish: i) linear

speed-frequency relationships, ii) U-shaped costs of transport, and iii) reverse Kármán wakes (visu-

alized with particle image velocimetry). More fish-like wakes appeared where the cost of transport

was low. By replicating autonomous multi-fin fish-like swimming, Finbot narrows the gap between

fish and fish-like robots and can address open questions in aquatic locomotion, such as optimized

propulsion for new fish robots, or the hydrodynamic principles governing the energy savings in fish

schools.

B.2 Hydrodynamic Advantages of In-line Schooling

Fish benefit energetically when swimming in groups, which is reflected by lower tail-beat frequen-

cies for maintaining a given speed. Recent studies further show that fish save the most energy when

swimming behind their neighbor such that both the leader and the follower benefit. However, the
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mechanisms underlying such hydrodynamic advantages have thus far not been established conclu-

sively. The long-standing drafting hypothesis — reduction of drag forces by judicious positioning in

regions of reduced oncoming flow— fails to explain advantages of in-line schooling described in this

work. Wepresent an alternate hypothesis for the hydrodynamic benefits of in-line swimming based on

enhancement of propulsive thrust. Specifically, we show that an idealized school consisting of in-line

pitching foils gains hydrodynamic benefits via two mechanisms that are rooted in the undulatory jet

leaving the leading foil and impinging on the trailing foil: i) leading-edge suction on the trailer foil,

and ii) added-mass push on the leader foil. Our results demonstrate that the savings in power can reach

as high as 70% for a school swimming in a compact arrangement. Informed by these findings, we de-

signed amodification of the tail propulsor that yielded power savings of up to 56% in a self-propelled

autonomous swimming robot. Our findings provide insights into hydrodynamic advantages of fish

schooling, and also enable bioinspired designs for significantly more efficient propulsion systems that

can harvest some of their energy left in the flow.
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C
On Smart Materials for Soft Robots

Dielectric elastomer actuators (DEAs) are compliant capacitors that operate as soft electro-

mechanical transducers and convert electrical energy into mechanical work (Fig. C.1 A). DEAs have

several attractive properties compared to other smart materials (e.g., use of soft elastomers, or em-

bedded and direct electrical-to-mechanical actuation), which make them particularly suitable for soft

robotics applications. Unfortunately, most DEAs also have severe limitations including low output
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Figure C.1: Operation of a dielectric elastomer actuator. (A) An electric field applied between two outer compliant elec‐
trodes causes a Maxwell stress. The outer electrodes attract and compress the inner soft dielectric elastomer. (B) Di‐
rectional control of such actuation is achieved by addition of strain limiting elements. Here, a single strain limiting layer
prevents biaxial expansion and causes the unimorph to bend, as is useful in a propulsive fish‐like fin, or an impulsive
jumping mechanism. (Credit: Mihai Duduta143)

forces, the need for a rigid frame, high actuation voltages, slow response times, low energy density,

and challenging integration with other components.

In amultidisciplinary team of roboticists andmaterial scientists spearheaded byMihai Duduta, we

addressed the limitations ofDEAs. In a novel design approach, wewere able to avoid pre-stretch of the

elastomers, andmultiply actuation forces by stacking several actuation layers. SuchDEAswere strong

enough to act as propulsive fins on an underwater robot (Fig. C.1 B) in one of the first demonstrations

of autonomous DEA-driven vehicles134.

We then explored soft DEA robots conducive to multi-modal locomotion144,145. Our bending

beam design approach enabled multiple gaits including crawling, hopping, jumping, and rolling
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(Fig. C.1 B). Gaits were selected and controlled by choice of actuation pattern, i.e., the frequency

and magnitude of the applied input voltage to the DEA. Such DEA robots can be used as versatile

experimental devices to validate locomotion models, in both natural and engineered systems.

In the following, the abstracts of the three publications coming out of this collaboration are

reprinted. Details are found in the full manuscripts.

C.1 A Modular Dielectric Elastomer Actuator to Drive Miniature Au-

tonomous Underwater Vehicles

In this paperwe present the design of a fin-like dielectric elastomer actuator (DEA) that drives aminia-

ture autonomous underwater vehicle (AUV).The fin-like actuator ismodular and independent of the

body of the AUV. All electronics required to run the actuator are inside the 100mm long 3D-printed

body, allowing for autonomous mobility of the AUV. The DEA is easy to manufacture, requires no

pre-stretch of the elastomers, and is completely sealed for underwater operation. The output thrust

force can be tuned by stacking multiple actuation layers and modifying the Young’s modulus of the

elastomers. The AUV is reconfigurable by a shift of its center of mass, such that both planar and ver-

tical swimming can be demonstrated on a single vehicle. For the DEA we measured thrust force and

swimming speed for various actuator designs ran at frequencies from 1Hz to 5Hz. For the AUV we

demonstrated autonomous planar swimming and closed-loop vertical diving. The actuators capable

of outputting the highest thrust forces can power the AUV to swim at speeds of up to 0.55 body

lengths per second. The speed falls in the upper range of untethered swimming robots powered by

soft actuators. Our tunable DEAs also demonstrate the potential to mimic the undulatory motions

of fish fins.
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C.2 Electrically-Latched Compliant Jumping Mechanism Based on a Di-

electric Elastomer Actuator

Jumpingmechanisms are useful in robotics for locomotion in unstructured environments, or for self-

righting abilities. However, most rigid robots rely on impact with the ground to jump, thereby re-

quiring a relatively rigid, and flat environment. Moreover, they need to be able to absorb high impact

forces during landing in order to maintain structural integrity. In this paper we investigate soft sys-

tems, capable of jumping repeatedly in unstructured environments with no need for precise landings.

Our impulsive approach is based on a soft electro-mechanical transducer, a dielectric elastomer actu-

ator (DEA). The design is inspired by click-beetles and simple bio-mechanical models, which convert

the flexing around a hinge into jumping. Our actuator is power amplified by the addition of a stiffer

strip, allowing for rapid shape transitions (22ms) between flat and curved states. The transition is

controlled by an electric latch: the DEA is discharged faster than the actuator can deform. The me-

chanical energy stored in the composite beam is released rapidly, leading to impulsive motions (jumps

of a full body length: i.e. 5 cm). This demonstration of an electrically-latched power amplification

mechanism shows that relatively simple electro-mechanical systems can exhibit impulsive behavior

which may enable new types of locomotion in compliant machines.

C.3 Tunable Multi-modal Locomotion in Soft Dielectric Elastomer

Robots

Soft robots require strong, yet flexible actuators for locomotion and manipulation tasks in unstruc-

tured environments. Dielectric elastomer actuators (DEAs) are well suited for these challenges in soft

robotics because they operate as compliant capacitors and directly convert electrical energy into me-

chanical work, thereby allowing for simple design integration at aminimal footprint. Inmost demon-
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strations, DEA-based robots are limited to a single mode of locomotion, for example crawling, swim-

ming, or jumping. In this work, we explored a range of actuation patterns in combination with a

novel actuator design to enable multi-modal locomotion, whereby an actuation pattern is defined by

an actuation voltage (proportional to the applied electric field) and frequency (the actuation rate). We

present a DEA robot capable of three different gaits including crawling, hopping, and jumping. In

addition, our robot can set itself upright by performing a roll, for example to prepare for the next jump

after landing on its side. These results demonstrate that DEAs can be used as versatile experimental

devices to validate locomotion models, in both natural and engineered systems.
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“Any sufficiently advanced technology is indistinguishable from
magic.” Arthur C. Clarke

And nature, too. I was lucky enough to experience the magical un-
derwater worlds while diving in the Galápagos Islands a year before
I started my PhD. Today, I ammore fascinated than ever about how
schooling fish coordinate their behaviors to seemingly swim like a
single entity. In a bid to replicate some of this magic, I built and ex-
perimentedwithBlueswarm. Above illustration by Jessica Paz shows
Bluebots milling about, much like the school of barracudas I wit-
nessed in the Galápagos.
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